Critical Errors in the Microbiology Laboratory

James A. McKinnell, M. D.

ASP Program

Infectious Disease Association of California

1

Disclosures

• I am the President and Co-Founder of Expert Stewardship

- I have provided promotional speaker services: Abbvie, Ferring
- I serve as a consultant for: Thermo Fisher

Definitions

Error- the state or condition of being wrong in conduct or judgement

Critical Error – an error that would be expected to have predictable negative outcomes on patient care

Quality Improvement Opportunity - a change in practice that might improve outcomes, but is not derived from an erroneous practice

Lucy

65 year old female

with pneumonia on Hospital Day 5. Transferred from OSH for higher level of care.

PMH: COPD, Bronchiectasis, Diastolic CHF, Recurrent Pneumonia (prior pathogen history unknown)

Lucy: Admission Exam

T: 101.2 RR: 22 BP: 104/62 HR: 125 Fi**O2: 92%**

- Intubated, Sedated
- Frail with slight temporal wasting
- JVD was Flat
- Tachycardic, No MRG
- RLL Rhonchi
- Decreased muscle mass
- No Skin Rash
- PEEP of 12 cm H2O and 80% FiO2
- Currently on norepinephrine at 6
 mcg/min
- Labs: WBC: 13K, GFR>80, LFTs
 WNL

RLL Pneumonia Gram-Negative Rods

X-Ray Image courtesy of James McKinnell, MD case files Gram Stain image: CDC Public Health Image Library

Lucy: Assessment

 65 yo transferred to our hospital with sepsis, RLL pneumonia with Gram-negative rods, respiratory failure, retained organ function on vasopressor therapy.

How important is correct ABX selection?

Inadequate antimicrobial therapy associated with higher mortality

1999;115:462-474.

Kumar A, et al. Crit Care Med 2006; 1589-1596, Kollef MH., et al. Chest. 1999;115:462-474.

Lucy: Assessment

 65 yo with sepsis, RLL pneumonia with Gram-negative rods, respiratory failure, retained organ function on vasopressor therapy.

What Antibiotics Should We Use?

Bacterial Pathogens Causing HAP S. aureus Other 24% 28% A. baumanni Ρ. aeruginosa 6% 17% K. Pneumonia Enterobacter spp. E. Col 25%

Sievert et al. Antimicrobial Resistant Pathogens Associated with Healthcare-Associated Infections: Summary of Data Reported to NHSN at the CDC, 2009-2010, ICHE January 2013

That data is cute, but how do we choose the drug to treat the patient?

Table 2. Adults (>21 y.o.) Gram-negative Bacteria – Non-Urine Isolates, % Susceptible

		Pe	enicillii	าร	Cephalosporins				Carbapenems			Amir	oglyco	sides	Fluoro- quinolone	Oth	er
Organism	No. Isolates	Ampicillin ⁶	Ampicillin- Sulbactam ⁶	Piperacillin- tazobactam	Cefazolin	Cefepime	Ceftazidime	Ceftriaxone ¹	Ertapenem	Imipenem	Meropenem	Amikacin	Gentamicin	Tobramycin	Ciprofloxacin	Trimethoprim- sulfamethoxazole	Colistin ⁷
Citrobacter freundii	37	R ²	R	76	R	89	_4	_ ⁴	97	99	99	99	89	92	92	81	99
Enterobacter aerogenes	94	R	R	88	R	98	_ ⁴	-4	99	97	99	99	99	99	99	98	98
Enterobacter cloacae	209	R	R	81	R	92	- ⁴	— ⁴	89	99	99	99	99	99	98	94	85
Escherichia coli	752	41	50	94	59	84	83	79	99	99	99	99	82	85	63	60	99
Klebsiella oxytoca	121	R	64	89	23	95	95	87	98	98	98	99	96	96	94	91	99
Klebsiella pneumoniae	399	R	70	87	71	86	85	84	93	94	94	98	92	88	85	81	97
Morganella morganii	60	R	R	97	R	99	-4	- ⁴	97	-	98	99	87	98	82	68	R
Proteus mirabilis	197	67	80	99	25	95	97	87	99	-	99	99	90	94	68	67	R
Serratia marcescens	127	R	R	96	R	96	-4	— ⁴	97	94	96	99	99	96	93	98	R
Acinetobacter baumannii	62	R	62	53	R	58	58	_	R	62	60	67	60	66	56	60	95
Pseudomonas aeruginosa	738	R	R	84	R	88	87	R	R	81	85	96	91	94	78	R	99
Stenotrophomonas maltophilia	84	R	R	R	R	-	30	R	R	R	R	R	R	R	-	99	70
Burkholderia cepacia complex	12 ⁵	R	R	R	R	R	27	R	R	R	18	R	R	R	36	64	R

¹ Cefotaxime and ceftriaxone have comparable activity against Enterobacteriaceae.

Antibiogram data source: UCLA Health Infectious Disease

Antibiogram Basics

- Each patient can contribute one isolate to the antibiogram
- The first column represents the number of patient-isolates per year
- Each other column presents the percentage of isolates that are susceptible to each drug

Table 2. Adults (>21 y.o.) Gram-negative Bacteria – Non-Urine Isolates, % Susceptible

		P	enicilli	ns	Cephalosporins				Carbapenems			Amin	oglyco	sides	Fluoro- quinolone	Oth	er
Organism	No. Isolates	A mpicillin ⁶	Ampicillin- Sulbactam ⁶	Piperacillin- tazobactam	Cefazolin	Cefepime	Ceftazidime	Ceftriaxone ¹	Ertapenem	Imipenem	Meropenem	Amikacin	Gentamicin	Tobramycin	Ciprofloxacin	Trimethoprim- sulfamethoxazole	Colistin ⁷
	07	3	R	76	R	89	_4	_4	97	99	99	99	89	92	92	81	99
Enterobacter aerogenes	94	n	R	88	R	98	_4	-4	99	97	99	99	99	99	99	98	98
Enterobacter cloacae	209		R	81	R	92	_ ⁴	— ⁴	89	99	99	99	99	99	98	94	85
Escherichia coli	752		50	94	59	84	83	79	99	99	99	99	82	85	63	60	99
Klebsiella oxytoca	121		64	89	23	95	95	87	98	98	98	99	96	96	94	91	99
Klebsiella pneumoniae	399		70	87	71	86	85	84	93	94	94	98	92	88	85	81	97
			R	97	R	99	-4	-4	97	-	98	99	87	98	82	68	R
Proteus mirabilis	197	67	80	99	25	95	97	87	99	-	99	99	90	94	68	67	R
Serratia marcescens	127	R	R	96	R	96	-4	-4	97	94	96	99	99	96	93	98	R
Acinetobacter baumannii	62		62	53	R	58	58	_	R	62	60	67	60	66	56	60	95
Pseudomonas aeruginosa	738		R	84	R	88	87	R	R	81	85	96	91	94	78	R	99
- Stenotropnomonas mattopnina	04	к	R	R	R	_	30	R	R	R	R	R	R	R	-	99	70
Burkholderia cepacia complex	12 ⁵	R	R	R	R	R	27	R	R	R	18	R	R	R	36	64	R

¹ Cefotaxime and ceftriaxone have comparable activity against Enterobacteriaceae.

2016 Antibiogram data source: UCLA Health Infectious Disease

Table 2. Adults (>21 y.o.) Gram-negative Bacteria – Non-Urine Isolates, % Susceptible

		Pe	enicilli	ns	Cephalosporins				Carbapenems			Amir	noglyco	sides	Fluoro- quinolone	Oth	er
Omenian	No. Isolates	Ampicillin⁵	Ampicillin- Sulbactam ⁶	Piperacillin- tazobactam	Cefazolin	Cefepime	Ceftazidime	Ceftriaxone ¹	Ertapenem	Imipenem	Meropenem	Amikacin	Gentamicin	Tobramycin	Ciprofloxacin	Trimethoprim- ulfamethoxazole	Colistin ⁷
Organism Citrabactor froundii	37	P 2		76		80		4	07	00	00	00	80	02	02	0 81	00
Enterobacter aerogenes	94	R	R	88	R	98	4	_4	99	97	99	99	99	92	92	98	99
Enterobacter cloacae	209	R	R	81	R	92	4	_4	89	99	99	99	99	99	98	94	85
Escherichia coli	752	41	50	94	59	84	3	79	99	99	99	99	82	85	63	60	99
Klebsiella oxytoca	121	R	64	89	23	95	5	87	98	98	98	99	96	96	94	91	99
Klebsiella pneumoniae	399	R	7(87	71	86	5	84	93	94	94	98	92	88	85	81	97
Morganella morganii	60	R	R	97	R	99	.4	-4	97	-	98	99	87	98	82	68	R
Proteus mirabilis	197	67	80	99	25	95	7	87	99	-	99	99	90	94	68	67	R
Serratia marcescens	127	R	R	96	R	96	.4	-4	97	94	96	99	99	96	93	98	R
Acinetobacter baumannii	62	R	62	53	R	58	8	_	R	62	60	67	60	66	56	60	95
Pseudomonas aeruginosa	738	R	R	84	R	88	7	R	R	81	85	96	91	94	78	R	99
Stenotrophomonas maltophilia	84	R	R	-	R		0	R	R	R	-	R	R	R	_	99	70
Burkholderia cepacia complex	12 ⁵	R	R	R	R	R	27	R	R	R	18	R	R	R	36	64	R

¹ Cefotaxime and ceftriaxone have comparable activity against Enterobacteriaceae.

2016 Antibiogram data source: UCLA Health Infectious Disease

Table 2.RRUMC: Adults (>21 y.o.) Gram-negative Bacteria –
Non-Urine Isolates, % Susceptible

		P	enicilli	ns	c	Cephal	ospori	ns	Cai	bapene	ems	Amin	oglyco	sides	Fluoro- quinolone	Oth	er
Ormonium	No. Isolates	Ampicillin	Ampicillin- sulbactam	Piperacillin- tazobactam	Cefazolin	Cefepime	Ceftazidime	Ceftriaxone ¹	Ertapenem	Imipenem	Meropenem	Amikacin	Gentamicin	Tobramycin	Ciprofloxacin	Trimethoprim- ulfamethoxazole	Colistin
Citrobacter freundii	40	P ²	R	88	R	93	3,4	4	90	93	95	99	83	93	85	73	99
Enterobacter aerogenes	63	R	R	79	R	95	4	4	98	95	99	99	99	99	98	98	99
	172	R	P	81		92	4	4	95	99	90	99	98	98	97	91	79
Escherichia coli	441	41	<i>f</i> D	92	79	84	83	79	98	99	99	8	79	81	58	55	99
<u>Klahaialla aunda aa</u>	102	R	6	01		95	95	92	98	99	00	9	95	97	96	91	99
Klebsiella pneumoniae	299	R	72	88	71	86	84	82	93	93	93	94	90	87	85	76	98
Morganella morganii	29 ⁵	R	R	97	R	99	_4	4	99	_	99	99	76	90	69	66	R
Proteus mirabilis	117	74	87	99	34	95	97	92	99	_	99	99	87	93	71	70	R
Serratia marcescens	99	R	R	98	R	99	_4	⁴	99	97	99	99	99	99	93	99	R
Acinetobacter baumannii	49	R	69	49	R	63	61		R	74	71	74	65	69	63	67	94
Pseudomonas aeruginosa	498	R	R	87	R	89	90	R	R	80	86	95	92	96	78	R	99
Stenotrophomonas maltophilia	53	R	R	R	R	_	32	R	R	R	R	R	R	R	_	94	45
Burkholderia cepacia complex	12 ^⁰	R	R	R	R	R	42	R	R	R	42	R	R	R	58	92	R

¹ Cefotaxime and ceftriaxone have comparable activity against *Enterobacteriaceae*.

² R = intrinsic resistance.

³ — = Not routinely tested and/or not applicable.

⁴ 3rd generation cephalosporins should not be used for serious infections.

⁵ Calculated from fewer than the standard recommendation of 30 isolates.

Table 2. Adults (>21 y.o.) Gram-negative Bacteria – Non-Urine Isolates, % Susceptible

		P	enicilli	ns	Cephalosporins				Carbapenems			Amir	noglyco:	sides	Fluoro- quinolone	Othe	er
Organism	No. Isolates	Ampicillin ⁶	Ampicillin- Sulbactam ⁶	Piperacillin- tazobactam	Cefazolin	Cefepime	Ceftazidime	Ceftriaxone ¹	Ertapenem	Imipenem	Meropenem	Amikacin	Gentamicin	Tobramycin	Ciprofloxacin	Trimethoprim- sulfamethoxazole	Colistin ⁷
Citrobacter freundii	37	R ²	R	76	R	89	_4	<u>_</u> 4	97	99	99	99	89	92	92	81	99
Enterobacter aerogenes	94	R	R	88	R	98	_ ⁴	_ ⁴	99	97	99	99	99	99	99	98	98
Enterobacter cloacae	209	R	R	81	R	92	_4	- ⁴	89	99	99	99	99	99	98	94	85
Escherichia coli	752	41	50	94	59	84	83	79	99	99	99	99	82	85	63	60	99
Klebsiella oxytoca	121	R	64	89	23	95	95	87	98	98	98	99	96	96	94	91	99
Klebsiella pneumoniae	399	R	70	87	71	86	85	84	93	94	94	98	92	88	85	81	97
Morganella morganii	60	R	R	97	R	99	— ⁴	-4	97	-	98	99	87	98	82	68	R
Proteus mirabilis	197	67	80	99	25	95	97	87	99	-	99	99	90	94	68	67	R
Serratia marcescens	127	R	R	96	R	96	<u>_</u> 4	_ ⁴	97	94	96	99	99	96	93	98	R
Asinstabastar baumannii	62	R	62	53	R	58	58	_	R	62	60	67	60	66	56	60	95
Pseudomonas aeruginosa	738	R	R	84		88	87	R	R	81	85	96	91	94	78	R	99
stenotropnomonas mattopnilia	84	R		ĸ		-	30	R	R	ĸ	ĸ	- N	N	ĸ		99	70
Burkholderia cepacia complex	12 ⁵	R	R	R	R	R	27	R	R	R	18	R	R	R	36	64	R

¹ Cefotaxime and ceftriaxone have comparable activity against Enterobacteriaceae.

Empiric Combination Therapy Is Associated with Higher Rates of Early, Appropriate Therapy for Patients with Sepsis Due to Gram-negatives

Micek S T et al. Antimicrob. Agents Chemother. 2010;54:1742-1748.

Antibiotic Selection for Sepsis

- What is the estimated risk that my chosen therapy will not be microbiologically active?
- What is the estimated risk of death for bad outcome for my patient while I await identification and sensitivity?

Assessment and Plan

- 65 yo with sepsis, RLL pneumonia, respiratory failure, but retained organ function.
- Meropenem 2 gm q8H (over 3H)
- Tobramycin 350mg IV q24H

Using the Antibiogram for Stewardship

 Do we really need to use a carbapenem in combination therapy here?

Table 2. Adults (>21 y.o.) Gram-negative Bacteria – Non-Urine Isolates, % Susceptible

		P	enicilli	ns		Cephal	ospori	ns	Ca	rbapene	ems	Amir	noglyco	sides	Fluoro- quinolone	Oth	er
Organism	No. Isolates	Ampicillin ⁶	Ampicillin- Sulbactam ⁶	Piperacillin- tazobactam	Cefazolin	Cefepime	Ceftazidime	Ceftriaxone ¹	Ertapenem	Imipenem	Meropenem	Amikacin	Gentamicin	Tobramycin	Ciprofloxacin	Trimethoprim– sulfamethoxazole	Colistin ⁷
Citrobacter freundii	37	R ²	R	76	R	89	_4	_ ⁴	97	99	99	99	89	92	92	81	99
Enterobacter aerogenes	94	R	R	88	R	98	_ ⁴	_ 4	99	97	99	99	99	99	99	98	98
Enterobacter cloacae	209	R	R	81	R	92	_ ⁴	-4	89	99	99	99	99	99	98	94	85
Escherichia coli	752	41	50	94	59	84	83	79	99	99	99	99	82	85	63	60	99
Klebsiella oxytoca	121	R	64	89	23	95	95	87	98	98	98	99	96	96	94	91	99
Klebsiella pneumoniae	399	R	70	87	71	86	85	84	93	94	94	98	92	88	85	81	97
Morganella morganii	60	R	R	97	R	99	_ 4	- ⁴	97	-	98	99	87	98	82	68	R
Proteus mirabilis	197	67	80	99	25	95	97	87	99	-	99	99	90	94	68	67	R
Serratia marcescens	127	R	R	96	R	96	— ⁴	-4	97	94	96	99	99	96	93	98	R
Asinstebaster boumonnii	62	R	62	53	R	58	58	_	R	62	60	67	60	66	56	60	95
Pseudomonas aeruginosa	738	R	R	84		88	87	R	R	81	85	96	91)4	78	R	99
stenotropnomonas mattopnilia	84	R	K	ĸ		-	30	R	R	ĸ	к	R	N 1	R	-	99	70
Burkholderia cepacia complex	12 ⁵	R	R	R	R	R	27	R	R	R	18	R	R	R	36	64	R

¹ Cefotaxime and ceftriaxone have comparable activity against Enterobacteriaceae.

Combination Antibiogram from UCLA

Information provided for two-drug combination does NOT imply synergism, antagonism or likely activity in vivo; 1142 patients, includes the most resistant

	Amikacin (97) ¹	Gentamicin (92)	Tobramycin (95)	Ciprofloxacin (80)
Cefepime (90)				
Meropenem (87)				
Piperacillin- tazobactam (86)				
Ciprofloxacin (80)				

*Includes pediatrics and adults

- 1. Percent susceptible for individual drug in parenthesis
- 2. Percent susceptible for either or both drugs (eg, %S to amikacin and/or cefepime

Adapted from 2016 Antibiogram data source: UCLA Health Infectious Disease http://www.pathnet.medsch.ucla.edu/department/cliniclab/microbio/amic.pdf Accessed 11/22/2017

Combination Antibiogram from UCLA

Information provided for two-drug combination does NOT imply synergism, antagonism or likely activity in vivo; 1142 patients, includes the most resistant

	Amikacin (97) ¹	Gentamicin (92)	Tobramycin (95)	Ciprofloxacin (80)
Cefepime (90)	99 ²	97	97	95
Meropenem (87)	98	96	97	92
Piperacillin- tazobactam (86)	99	97	97	93
Ciprofloxacin (80)	98	95	96	-

*Includes pediatrics and adults

- 1. Percent susceptible for individual drug in parenthesis
- 2. Percent susceptible for either or both drugs (eg, %S to amikacin and/or cefepime

Adapted from 2016 Antibiogram data source: UCLA Health Infectious Disease

Assessment and Plan

- 65 yo with sepsis, RLL pneumonia, respiratory failure, but retained organ function.
- Piperacillin-Tazobactam 4.5 gm q8 Hours (over 2H)
- Tobramycin 350mg IV q24

Hospital Antibiogram Limitations

- Favors observations in earlier part of calendar year
- Traditional antibiograms cannot provide interpretable data for combination therapy approaches
- Does not adjust for specific patient risk factors, including prior antibiotic exposure, history of MDROs, and length of stay in the hospital or location in the hospital

Quality Improvement Opportunity

 Take advantage of available data to provide better prediction scoring to clinicians

BACTERIOLOGY

Risk Factors for Colistin Resistance among Gram-Negative Rods and *Klebsiella pneumoniae* Isolates

Stefan E. Richter,^{a,b} Loren Miller,^c Daniel Z. Uslan,^d Douglas Bell,^e Karol Watson,^{b,f} Romney Humphries,^{g*} James A. McKinnell^c

Open Forum Infectious Diseases

MAJOR ARTICLE

Risk Factors for Development of Carbapenem Resistance Among Gram-Negative Rods

Stefan E. Richter,^{12,a} Loren Miller,³ Jack Needleman,⁴ Daniel Z. Uslan,⁵ Douglas Bell,⁶ Karol Watson,¹² Romney Humphries,^{7,a} and James A. McKinnell³

¹Division of Cardiology, ²NIH BD2K Center of Excellence, ²Infectious Disease Clinical Outcome Research Unit, Los Angeles Biomedical Research Institute at Harbor-UCLA, ⁴Department of Health Policy and Management, ⁵Division of Infectious Disease, ⁶Division of Internal Medicine, and ²Division of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, California⁴Present affiliation: Accelerate Diagnostics, Tucson, Arizona

Our Patient Came from an OSH!!!

Data presented as: Percent Susceptible (# of Isolates Tested)	# of all isolates tested (# of hospitals reporting)	Ampicillin	Ampicillin/ Sulbactam	Piperacillin/ Tazobactam	Ceftriaxone	Ceftazidime	Cefepime	Cefazolin	Ertapenem	lmipenem	Meropenem	Amikacin	Gentamicin	Tobramycin	Ciprofloxacin	Levofloxacin	Trimethoprim/ Sulfamethoxazole	Nitrofurantoin	Minocycline	Tigecycline
Acinetobacter	2,723	R	43	27	10	27	40	R	R	27	39	36	37	40	27	26	48	-	79	79
baumannii	75		2,084	1,776	1,320	1,894	1,139			1,120	1,436	1,925	2,661	2,084	2,030	1,985	2,287		154	424
Citrobacter freundii	1,720	R	R	83	79	80	98	R	100	98	98	99	92	92	91	90	82	95	-	100
	45			1,604	1,629	1,370	1,579		1,100	361	1,329	1,517	1,720	916	1,490	801	1,683	1,443		254
Citrobacter koseri	561	R	90	99	96	97	99	93	100	99	100	99	99	97	99	98	96	86	-	100
	19		85	549	527	383	483	498	248	161	364	450	561	427	372	450	550	542		61
Enterobacter sp.	8,911	R	R	81	79	81	96	R	95	94	99	99.5	97	97	96	95	92	35	-	99
	71			8508	7918	6816	8044		5333	2138	6770	7207	8818	5022	7331	4605	8510	5735		1650
Escherichia coli	143,153	38	50	94	87	89	89	83	100	100	100	99	88	83	73	67	67	96	-	100
	82	15,318	59,750	135,592	136,184	118,505	128,176	123,386	89,252	27,115	11,374	123,826	142,208	67,642	122,656	69,750	141,267	129,730		8,523
Klebsiella oxytoca	3,248	R	66	93	93	96	97	53	100	100	100	100	96	94	95	95	91	85	-	100
	49		1,693	2,844	2,842	2,448	2,772	2,604	1,890	717	2,408	2,679	2,948	1,692	2,588	1,358	2,780	2,046		479
Klebsiella	30,629	R	71	87	85	86	87	81	96	90	97	95	90	84	86	84	83	35	-	93
pneumoniae	80		13,763	24,936	25,145	20,712	23,744	21,631	15,606	6,529	19,382	24,501	25,802	15,356	21,942	13,646	24,970	20,500		1,948
Morganella	2,300	R	10	96	85	78	96	R	100	55*	99	99	73	85	63	54	56	R	-	R
morganii	53		1,362	2,223	2,037	1,747	2,077		1,300	439	1,599	2,119	2,240	1,325	1,876	1,401	2,178			
Proteus mirabilis	19,503	70	77	97	87	91	92	74	99	69*	97	99	83	82	67	62	68	R	-	R
	80	17,791	9,969	17,599	17,582	14,857	16,487	16,657	10,454	2,583	13,057	15,833	18,733	11,239	15,154	11,572	18,603			
Pseudomonas	23,921	R	R	85	R	81	85	R	R	80	84	96	85	93	73	65	R	R	-	R
aeruginosa	83			23,524		20,258	21,045			12,142	17,770	22,185	23,575	21,464	19,554	16,206				
Serratia marcescens	2,668	R	R	94	90	92	95	R	99	96	97	96	97	79	87	86	98	R	-	99.6
	58			1,876	2,376	2,047	2,401		1,462	555	1,987	2,417	2,663	1,707	2,330	1,581	2,256			550
Stenotrophomonas	1,970	R	R	R	R	46	-	R	R	R	R	R	R	R	-	81	92	-	98	R

LA County Regional Antibiogram

Assessment and Plan

- 65 yo with sepsis, RLL pneumonia, respiratory failure, but retained organ function.
- Meropenem 2 gm q8H (over 3H)
- Tobramycin 350mg IV q24H

K. Pneumoniae from OSH Blood CX

Antimicrobial	Susceptibility
Ciprofloxacin	R
Pip/Tazobactam	R
TMP/SMX	R
Gentamicin	R
Colistin	S
Meropenem	S
Tigecycline	R

2 Days After Consult

- Lucy still on ventilator, max FiO2, high positive ventilatory pressures
- Persistent Fevers
- Increased Sputum production
- Max pressors, increased over last 24 hours

K. pneumoniae from Local Laboratory

Antimicrobial	Susceptibility
Ciprofloxacin	R
Pip/Tazobactam	R
Gentamicin	R
Colistin	R
Meropenem	R
Tigecycline	R

Delayed Antimicrobially Active Therapy (DAT) Increases Risk of Death by 2-3 Fold!!

K. pneumoniae final results

Antimicrobial	Susceptibility
Meropenem	R
Meropenem MIC	2

Why was there a discrepancy in Results?

OSH using old breakpoints, local hospital uses current breakpoints!

Enterobacteriaceae breakpoints

	Current Breakpoints (M100-S22) MIC (ug/mL)			Previous Breakpoints (M100-S19) MIC (ug/mL)		
<u>Antibiotic</u>	Susceptible	Intermediate	<u>Resistant</u>	Susceptible	Intermediate	<u>Resistant</u>
Ertapenem	<0.25	0.5	≥1	<u><</u> 2	4	<u>></u> 8
Imipenem	≤1	2	≥4	<u><</u> 4	8	<u>></u> 16
Meropenem	<u>≤</u> 1	2	≥4	<u><</u> 4	8	<u>></u> 16

Use of Updated breakpoints is supported by the CLSI, FDA, CDC, and IDSA

Humphries et al. J Clin Microbiology, 2015.

Survey of Hospital Use of Current CLSI breakpoints

K. pneumoniae final results

Antimicrobial	Susceptibility
Meropenem	R
Meropenem MIC	2

Do we really care if the MIC is <=1 versus 2-4 mcg/ml?

Clinical Outcomes of *Enterobacteriaceae* Infections Stratified by Carbapenem MICs

Twisha S. Patel, Jerod L. Nagel

Departments of Pharmacy Services and Clinical Sciences, University of Michigan Health System and College of Pharmacy, Ann Arbor, Michigan, USA

.

- Matched cohort analysis of adult patients
- Enterobacteriaceae infections treated with carbapenems
- Compared MIC of 2-8 mcg/ml versus <a>

Does knowing the MIC matter?

TABLE 3 Clinical outcomes stratified by carbapenem MIC

	Value		
Outcome	MIC of ≤ 1 mg/liter	MIC of 2-8 mg/liter	P value
No. of patients with 30-day mortality/total number of patients (%)	1/18 (5.6)	7/18 (38.9)	0.04
Mean total hospital length of stay \pm SD, in days	34.4 ± 25	57.6 ± 45	0.06
Mean ICU length of stay \pm SD, in days	21.7 ± 19	56.6 ± 44	< 0.01
No. of patients with 30-day hospital readmission/total number of patients (%)	3/17 (17.6)	3/11 (27.3)	0.65

Patel et al. Journal of Clinical Medicine. 2015

CRITICAL ERRORS

 Failure to use current breakpoints increases patients risk of death Why would anyone use the old CLSI breakpoints?

Use of current Enterobacterales breakpoints: U.S. vs. International CAP-Accredited Labs

Simner et al. 2022. OFID. 9(3):ofac007

Breakpoint situation: U.S.

Standards Organization

- Used by most U.S. laboratories
- "best practices" for laboratories
- Breakpoints in M100, M45

Regulatory

- FDA breakpoints MUST be used by FDAcleared AST instruments
- Breakpoints listed on "STIC" website

21st Century Cures allows recognition of MANY CLSI breakpoints by FDA.... But not all

FDA and CLSI Breakpoints

FDA and CLSI independently set breakpoints for new drugs

- FDA as part of New Drug Approval process \rightarrow listed on STIC website
- CLSI if the drug sponsor requests CLSI breakpoints (optional) \rightarrow listed in M100
- When breakpoints differ or are updated, CLSI may request FDA to recognize CLSI BP via Rationale Document submission

45

Breakpoint Uodates

"The FDA and CLSI have supported the 2010 CLSI breakpoints for Enterobacteriaceae.

FDA cannot mandate that AST manufacturers update breakpoints.

AST manufacturers do not want to spend the \$\$ to updated their breakpoints with the FDA."

Piperacillin-Tazobactam

- 1981 piperacillin approved
- 1993 piperacillin-tazobactam approved for skin and skin structure and intra-abdominal infections
 - BEFORE ESBLs were wide-spread
 - CLSI never included editing pip-tazo as "R" if ESBL detected, but many do this in practice
- Tazobactam inhibit activity of ESBLs
- Piperacillin penicillin

	Susceptible	Intermediate	Resistant
CLSI 2021 & FDA	≤16µg/mL	32 to 64 μg/mL	≥128µg/mL

Harris PNA, et al. JAMA. 2018;320:984-994

- Piperacillin-tazobactam failed to demonstrate non-inferiority compared with meropenem
- Analysis showed NO relation to MIC

	Mortality 30 days n/total (%)		Risk difference %	P value for
	Piperacillin-tazobactam	Meropenem	(1-sided 97.5% CI)°	non- inferiority
Primary analysis	23/187 (12.3)	7/191 (3.7)	8.6 (-∞ to 14.5)	.90
Per-protocol analysis	18/170 (10.6)	7/186 (3.8)	6.8 (-∞ to 12.8)	.76

Risk difference 8.6% [one sided 97.5% CI: -∞ to 14.5%]

JAMA. 2018;320(10):984-994

50

What happened?

Patients enrolled based on susceptibility results from local labs

- Mostly Vitek 2
- Repeat testing by reference BMD = many patients had pip-tazo resistant infections

MERINO re-analyzed by BMD MICs

	Bivariate Ana	Multivariate Analysis		
/ariable	OR	Р	aOR	Р
.og,(MIC)	1.2 (0.9–1.6)	.20		
/IC > 16 mg/L	10.3 (2.6-41.9)	<.001	14.9 (2.8–87.2)	.002
JTI source	0.4 (0.2-1.1)	.09	0.6 (0.2-1.8)	.3
Charlson comorbidity score	1.6 (1.3–2.0) ^a	<.001	1.7 (1.3–2.2) ^a	<.001

Abbreviations: aOR, adjusted odds ratio; MIC, minimum inhibitory concentration; UTI, urinary tract infection.

^aCalculated for each numerical increase in Charlson Comorbidity Score.

Henderson A, et al. Clin Infect Dis. 2020 Oct 27:ciaa1479

		Bivariate Ana	lysis	Multivariate Ar	nalysis
	Variable	OR	Р	aOR	Ρ
	Log (MIC)	1.2 (0.9–1.6)	.20		
<	MIC > 16 mg/L	10.3 (2.6–41.9)	<.001	14.9 (2.8–87.2)	.002
	UTI source	0.4 (0.2–1.1)	.09	0.6 (0.2–1.8)	.3
	Charlson comorbidity score	1.6 (1.3–2.0) ^a	<.001	1.7 (1.3–2.2) ^a	<.001

Abbreviations: aOR, adjusted odds ratio; MIC, minimum inhibitory concentration; UTI, urinary tract infection.

^aCalculated for each numerical increase in Charlson Comorbidity Score.

Henderson A, et al. Clin Infect Dis 2020; PMID: 33106863

Henderson A, et al. Clin Infect Dis 2020; PMID: 33106863

MERINO: Reference MIC & Association with Mortality

Henderson A, et al. Clin Infect Dis 2020; PMID: 33106863

Breakpoint summary

Parameter	
Microbiology	≤8 μg/mL is the ECV
Clinical data	≤16 µg/mL is associated with reduced mortality risk
PK/PD	≤8 or ≤16 μg/mL result in reasonable target attainment

	Susceptible µg/mL	Susceptible Dose- dependent µg/mL	Resistant µg/mL
CLSI	≤16	32 to 64	≥128
FDA	≤16	32 to 64	≥128
EUCAST	≤8		>8
CLSI 2022	≤8#	16*	≥32

Breakpoint of $\leq 16 \ \mu g/mL$ for susceptible avoided due to testing concerns

SDD vs I to promote extended infusion option EUCAST assessment that 16 is ATU

Differences Between <u>Existing</u> FDA and CLSI Breakpoints

>100 differences between FDA and CLSI (M100) breakpoints

Examples			
FDA has breakpoint, CLSI does not	 Tigecycline, omadacycline 		
CLSI has breakpoint, FDA does not	 Colistin, E. faecium daptomycin 		
Only one has a disk breakpoint	 Ceftazidime for Acinetobacter spp. 		
Differences in the categories	Cefepime "S-DD"		
Differences in the breakpoints	 Piperacillin-tazobactam for Enterobacterales 		

Local Laboratory CAN update breakpoints

- Obtain Reference Bacterial Strains
 - FDA has reference panels
- Laboratory runs a verification or validation study to update the breakpoints
 - https://clsi.org/meetings/ast/breakpoints-in-use-toolkit/
 - AST manufacturer can also be helpful in this process
- Save Lives
- LA County Department of Public Health Assisted in Carbapenem Breakpoint Updates for their Hospitals

BREAKING NEWS FLASH

- Aminoglycosides for Pseudomonas gone?
- Combination therapy?

Summary

- Discrepancy between CLSI and FDA Breakpoints is the product of clunky FDA regulation of Automated Susceptibility Testing Devices
- Failure to Resolve the Breakpoint Discrepancy has Resulted in Increased and Needless Patient Mortality – Documented in Clinical Trials and Not Quantified in Clinical Practice
- ASP Programs Need to Include at Least Annual Review and Routine Breakpoint Updates with Their Microbiology Laboratory
- Public Health may Play a Role in Standardizing Treatment