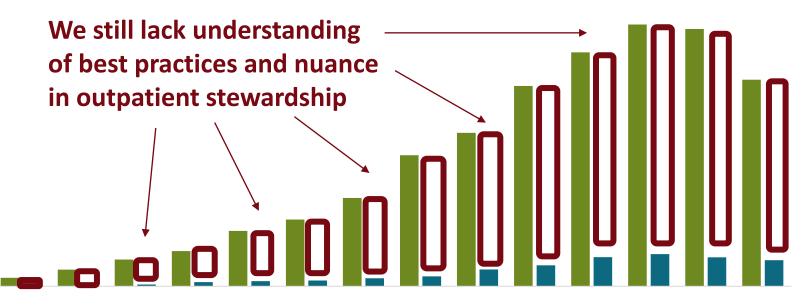


Outpatient Antibiotic Stewardship

David Ha, PharmD

Publications Per Year (PubMed)

Inpatient Stewardship Outpatient Stewardship


2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

PubMed.gov (Accessed October 2023)

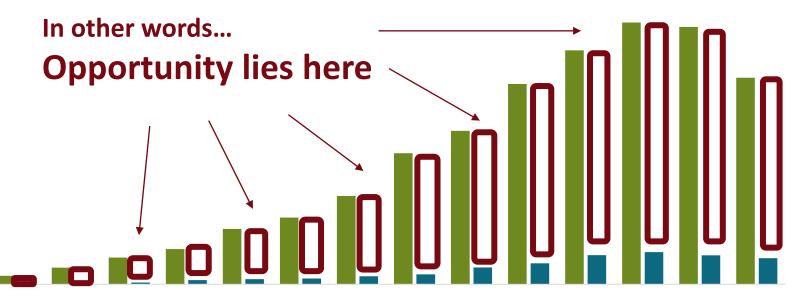
Publications Per Year (PubMed)

Inpatient Stewardship
Outpatient Stewardship

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

PubMed.gov (Accessed October 2023)

Outpatient vs. Inpatient ASP



Publications Per Year (PubMed)

Inpatient Stewardship
Outpatient Stewardship

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

PubMed.gov (Accessed October 2023)

CDC Core Elements

The Core Elements of **Outpatient Antibiotic Stewardship**

Commitment	Action	Tracking and Reporting	Education and Expertise
 Commitment Posters/Letters Identify single leader Include AMS- related duties in job description or evaluation Clinic staff set patient expectations 	 Evidence based diagnosis and treatment (guidelines) Delayed prescribing or Watchful waiting Communications training Written justification for antibiotic prescribing Provide clinical decision support Triage and prevent unnecessary visits 	 Monitor and evaluate prescribing practices Feedback to clinicians Share quality measures from health care plans and payors (i.e., HEDIS) 	 Clinician education (i.e., academic detailing, CE) Patient education Access to consultants

CDC. 2019

Commitment

The Journey Starts...Or Ends Here

CDC Core Elements

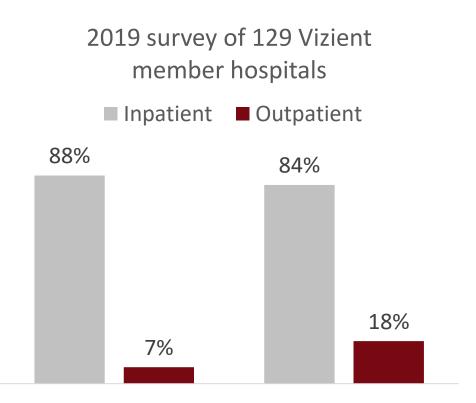
CDC. 2019

The Core Elements of **Outpatient Antibiotic Stewardship**

Commitment	Action	Tracking and Reporting	Education and Expertise
 Commitment Posters/Letters Identify single leader Include AMS- related duties in job description or evaluation Clinic staff set patient expectations 	 Evidence based diagnosis and treatment (guidelines) Delayed prescribing or Watchful waiting Communications training Written justification for antibiotic prescribing Provide clinical decision support Triage and prevent unnecessary visits 	 Monitor and evaluate prescribing practices Feedback to clinicians Share quality measures from health care plans and payors (i.e., HEDIS) 	 Clinician education (i.e., academic detailing, CE) Patient education Access to consultants

How Long Has Your Outpatient Stewardship Program Been In Place?

- Less than 1 year
- 1-2 years
- 3-5 years
- >5 years



How are we doing?

Characteristics of Effective Outpatient ASPs:

- Institutional Guidelines
- Rapid Diagnostics
- Outpatient Antibiograms
- Dedicated Pharmacist Support

Fully Functioning ASP

Effectiveness in 1+ antibiotic use outcome

Commitment Posters

- Randomized trial
- 5 primary care clinics
- Intervention (12 weeks):
 - Poster-sized commitment letter in exam room
 - Commitment to avoid inappropriate antibiotic use for URIs
 - Clinician photos and signatures

Inappropriate Abx: Control: 43.5% → 52.7% Poster: 42.8% → 33.7% 19.7% Absolute Reduction (p=0.02)

Meeker et al. JAMA Intern Med 2014; Minnesota DPH. 2022

Tracking and Reporting

Your Starting Line IMO... The Most Important Piece

CDC Core Elements

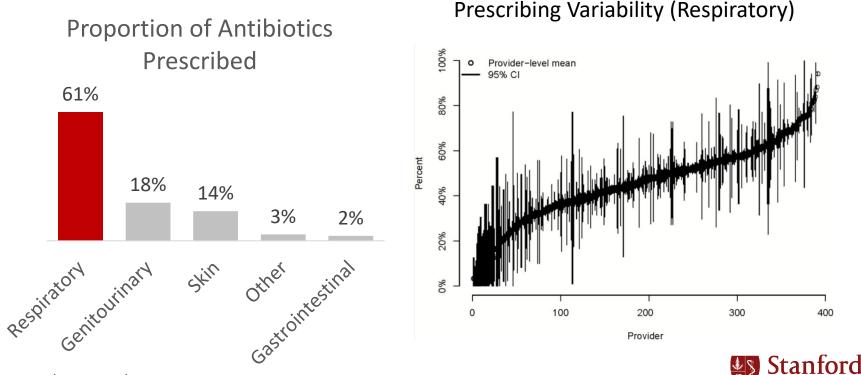
CDC. 2019

The Core Elements of **Outpatient Antibiotic Stewardship**

Commitment	Action	Tracking and Reporting	Education and Expertise
 Commitment Posters/Letters Identify single leader Include AMS- related duties in job description or evaluation Clinic staff set patient expectations 	 Evidence based diagnosis and treatment (guidelines) Delayed prescribing or Watchful waiting Communications training Written justification for antibiotic prescribing Provide clinical decision support Triage and prevent unnecessary visits 	 Monitor and evaluate prescribing practices Feedback to clinicians Share quality measures from health care plans and payors (i.e., HEDIS) 	 Clinician education (i.e., academic detailing, CE) Patient education Access to consultants

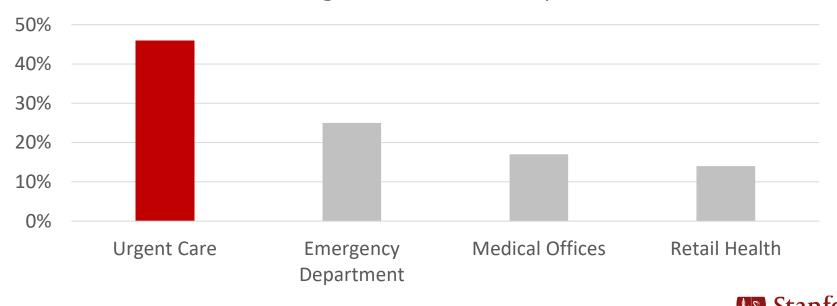
Ambulatory (vs. Inpatient) Antibiotic Data

The Good

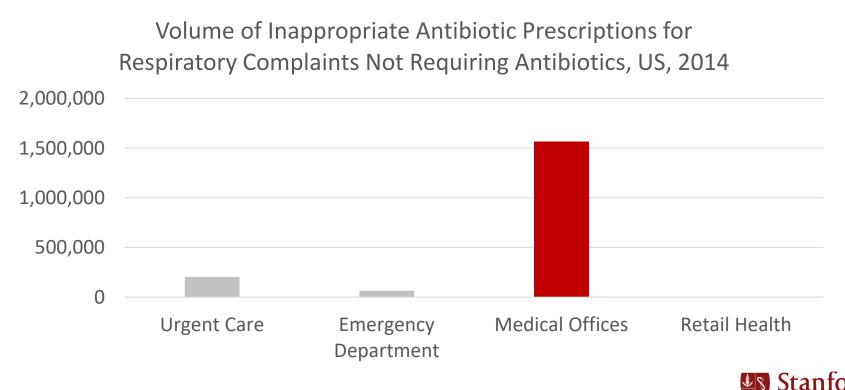

- "Indexed" to an encounter
 - Regimen frequently assessable as a single antibiotic order
- Diagnosis codes may clarify intended indication
 - Especially in urgent care/ED
- Naturally Individualized
 - Assess by clinic/prescriber

The Bad

- More volume…
 - ...and handling this volume
- Access to data (IT barriers)
- Diagnosis codes may not clarify intended indication
 - Primary Care Multiple diagnoses
 - Non-billable encounters
 - Code shifting


Where to Start?

Stenehjem et al. CID 2020


Where to Start?

Proportion of Visits for Respiratory Complaints Not Requiring Antibiotics Leading to Antibiotic Prescription, US, 2014

Palms et al. JAMA Intern Med 2018

Where to Start?

Palms et al. JAMA Intern Med 2018

Outpatient Antibiotic Data Structure

- Encounter Data
 - Encounter-associated antibiotic regimen
 - Drug, Dose, Route, Duration, Refills
 - Encounter-associated diagnosis(es)
 - Encounter-associated prescriber, prescriber type (MD/DO vs. APP), clinic
 - <u>Encounter type</u>
 - In-office vs. Telemedicine vs. Phone Call/Message vs. Nurse Visit vs. Other
- Patient Data
 - Age (peds vs. adult), Gender, Race/Ethnicity/Zip Code, Insurance/Medical Group

ICD-What?

- Diagnosis codes are important for estimating antibiotic prescribing appropriateness in select scenarios
- There are >70,000 ICD-10 codes
- Dictionaries are key!
 - Example: Scan QR Code
 - Click "Supplementary Materials"
 - Click last document ("...Supplementary_Appendix...")

ICD-10 Dictionary – IHS Example

Click "Supplementary Materials"
Click last document ("...Supplementary Appendix...")

- Step 1: Identify Priority ICD-10
 - Lowest tier ICD-10 takes priority (if multiple)
- Step 2: Assign Tier, Category, Subcategory
 - Based on Priority ICD-10
- Example:
 - J20.9 Bronchitis
 - Tier = 3, Category = Respiratory, Subcategory = Bronchitis
 - Antibiotic Rx: Azithromycin 500 mg PO daily x 3 days
 - Assessment = Inappropriate

Tier 1	Antibiotics <u>Almost Always</u> Indicated
Tier 2	Antibiotics <u>Sometimes</u> Indicated
Tier 3	Antibiotics <u>Almost Never</u> Indicated
Category	i.e., Respiratory, GU, GI, Skin, Other
Subcategory	i.e., Sinusitis, URI, UTI, Cellulitis, Diverticulitis

Stenehjem et al. CID 2020; Fleming-Dutra et al. JAMA 2016

Possible Metrics

Metric	How to Calculate	Example
Antibiotic Prescribing Rate (APR)	Encounters with antibiotic precribed All encounters	APR for Tier 3 Respiratory Encounters
Proportion of Prolonged Antibiotic Course Prescribed	Encounters with antibiotic duration > X days All encounters	Proportion of Tier 1 Respiratory Encounters with Duration >5 days
Proportion of Inappropriate Antibiotic Selection	Encounters with inappropriate antibiotic All encounters	Proportion of Tier 1 Respiratory Encounters (excluding aeCOPD) with Azithromycin Monotherapy
Specific Antibiotic Prescribing Index	Encounter with X antibiotic prescribed Encounters with any antibiotic prescribed	Proportion of amoxicillin among all antibiotics (e.g., "Amoxicillin Index")

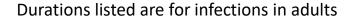
HEDIS – Bronchitis (AAB)

- Comparative quality measures for healthcare payors
- "Avoidance of Antibiotic Treatment for Acute Bronchitis (AAB)"
 - % of visits with coded diagnosis of URI without antibiotic prescription (3 months and older)
 - Added in 2021

AAB Year	Commercial HMO	Commercial PPO	Medicaid HMO
2021	47.6%	47.2%	55.7%
2020	44.3%	43.9%	55.3%
2019	41.2%	40.2%	52.3%
2018	35.1%	32.5%	36.4%

NCQA. 2021 www.ncqa.org/hedis/measures/avoidance-of-antibiotic-treatment-for-acutebronchitis-bronchiolitis/); Melville et al. ASHE 2023

De-Prescribing Not the Only Target


Sinusitis	5 days		
САР	5 days	May consider 3 days	
aeCOPD	3-5 days		
Cellulitis	5 days	May consider extension if	
Skin Abscess	5 days from I&D	lack of improvement	
Uncomplicated Cystitis	5 days (nitrofurantoin) 3 days (TMP/SMX) 1 dose (fosfomycin)	3-7 days for oral beta lactams	
Pyelonephritis or Complicated Cystitis	7 days (FQs)	7-14 days TMP/SMX 10-14 days oral beta lactams	

Target **Duration!**

Sinusitis	5 days	In assessing for
САР	5 days	inappropriate
aeCOPD	3-5 days	durations
Cellulitis	5 days	>E dava gata ta
Skin Abscess	5 days from I&D	>5 days gets to most of these
Uncomplicated Cystitis	5 days (nitrofurantoin) 3 days (TMP/SMX) 1 dose (fosfomycin)	>7 days gets to all* (including peds)
Pyelonephritis or Complicated Cystitis	7 days (FQs)	*some exception for adult cUTI/pyelo

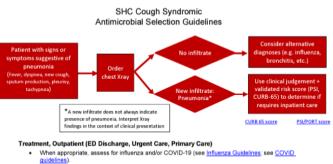
Action

Where the Rubber Meets the Road (Ideally once you have data)

CDC Core Elements

CDC. 2019

The Core Elements of **Outpatient Antibiotic Stewardship**


Commitment	Action	Tracking and Reporting	Education and Expertise
 Commitment Posters/Letters Identify single leader Include AMS- related duties in job description or evaluation Clinic staff set patient expectations 	 Evidence based diagnosis and treatment (guidelines) Delayed prescribing or Watchful waiting Communications training Written justification for antibiotic prescribing Provide clinical decision support Triage and prevent unnecessary visits 	 Monitor and evaluate prescribing practices Feedback to clinicians Share quality measures from health care plans and payors (i.e., HEDIS) 	 Clinician education (i.e., academic detailing, CE) Patient education Access to consultants

Guidelines

- Resources for clinicians
- "True north" to define appropriateness
 - Ideal when developing metrics
- Involve front line clinicians leverage the IKEA® effect
- Patient education tool
- TJC element of performance for ambulatory ASP
 - "EP3: The organization uses evidence-based practice guidelines related to its annual antimicrobial stewardship goal(s)"
- No need to reinvent the wheel...

TJC. 2020 (https://www.jointcommission.org/standards/r3-report/r3-report-issue-23-antimicrobial-stewardship-in-ambulatory-health-care/)

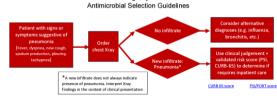
- Respiratory and blood cultures are not routinely indicated for outpatient CAP
- Procalcitonin not thought to be helpful in ambulatory settings. Negative procalcitonin should not be used to withhold antibiotics at diagnosis (see <u>Procalcitonin Guide</u>)
- Common bacterial pathogens: Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Chlamydia pneumoniae, Mycoplasma pneumoniae

Guidelines

Stanford MEDICINE Stanford Antimicrobial Safety & Sustainability Program

Outpatient Antibiotic Resources

Clinical Pathways


Cough Management 📩

Influenza Treatment Guide 📥

Sinusitis Treatment Guide 📥

Urinary Tract Infection Treatment Guide 📥

SHC Cough Syndromic

Treatment, Outpatient (ED Discharge, Urgent Care, Primary Care)

- When appropriate, assess for influenza and/or COVID-19 (see Influenza Guidelines) see <u>COVID</u> guidelines).
- Respiratory and blood cultures are not routinely indicated for outpatient CAP
- Procalcitonin not thought to be helpful in ambulatory settings. Negative procalcitonin should not be used to withhold antibiotics at diagnosis (see <u>Procalcitonin Guide</u>)
- Common bacterial pathogens: Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Chlamydia pneumoniae, Mycoplasma pneumoniae

Table 1. Outpatient Rx: Community Acquired Pneumonia Treatment

Risk factors	Preferred Antibiotic Regimen	Alternative Antibiotic Regimen	Duratio
No comorbidities (below)	Amoxicillin 1000 mg PO TID	Cefpodoxime 200 mg PO BID ^b	
No risk factors for MRSA or <i>Pseudomonas</i> aeruginosa ^a		OR Levofloxacin 750 mg PO daily	5 days
Presence of comorbidities, including: Chronic heart, lung, liver, or renal disease, Diabetes, Alcoholism, Malignancy, Asplenia	Amoxiciilin/Clavulanate 875/125 mg PO BID AND Axithromycin 500 mg PO x 1 on first day followed by 250 mg PO daily on days 2-5 ⁴	Cefpodexime 200 mg PO BID ^b AND Azithromycin 500 mg PO x 1 on first day followed by 250 mg PO daily on days 2-5° OR Levofloxacin 750 mg PO daily ⁴	5 days

Cefpodoxime may be substituted with Cefuroxime 500 mg PO BID or cefdinin Levofloxacin may be substituted with Moxifloxacin 400 mg PO daily

^d Azthromycin dose can also be 500 mg PO daily x 3 doses or may be substituted with Doxycycline 100 mg PO BID

https://med.stanford.edu/ bugsanddrugs

SHC ABX Guidelines: Acute Rhinosinusitis in Adults

Considerations

Stanford Bugs

and Drugs

- · Most (90-98%) sinusitis in the ambulatory setting is due to a viral infection that will self-resolve.
- Guidelines recommend against antibiotics in the first week of symptoms for patients with mildmoderate sinusitis. [IDSA guidelines, Choosing Wisely]
- In a Cochrane review of this issue¹, studies that compared antibiotics with placebo for maxillary sinusitis showed that, in most cases, symptoms improved within two weeks, regardless of whether the participant received an antibiotic or not.

Table 1. Treatment, Outpatient (ED Discharge, Urgent Care, Primary Care)

Antibiotics are o	nly indicated in the following presentations	
ACUTE SYMPTOMS	 Does not meet criteria for the presentations below 	No antibiotics. Watchful waiting
051/505		
SEVERE	 Temp ≥39°C (102°F) AND 	Antibiotics indicated
	 Facial pain/pressure AND 	(see Table 2)
	 Purulent discharge for > 3 consecutive days 	
PERSISTENT	 Purulent discharge AND 	Watchful waiting and no antibiotic
	 Facial pain/pressure or nasal obstruction without improvement for > 10 days 	prescription (with return precautions)
WORSENING	 New or worsening sinusitis signs or symptoms AFTER 	OR
	 initial improvement OR 	
	 following a URI has lasted > 7 	Delayed prescription (see Table 2)
	days	Contact clinic or fill prescription in 2 – 3 days if worsening or 5-7 days if not improving

Table 2. Options when antibiotics are indicated

Preferred Regimen	Alternative Regimen for penicillin allergy	Duration
Amoxicillin/Clavulanate 875/125 mg PO BID		
OR		
Cefpodoxime 200 mg PO BID	Levofloxacin 750 mg PO daily	5-7 days
OR		
Cefuroxime 500 mg PO BID		
AVOID:		

*Doxycycline or Azithromycin – high rates of S. pneumoniae resistance at SHC *Fluoroquinolones in absence of allergy or contraindication to preferred regimens

MEDICINE

Selected Resources

- CDC Adult/Pediatric Outpatient Treatment Recommendations
 - https://www.cdc.gov/antibiotic-use/clinicians/
- Stanford Children's Health
 - https://www.stanfordchildrens.org/en/for-healthprofessionals/antimicrobial-stewardship-program
- Intermountain Health Care
 - https://intermountainhealthcare.org/health-information/health-library/antibiotic-stewardship/
- UCSF Infectious Diseases Management Program
 - https://idmp.ucsf.edu/
- UC Davis
 - https://health.ucdavis.edu/antibiotic-stewardship/outpatientstewardship.html
- University of Michigan
 - https://www.med.umich.edu/asp/outpatient.html
- …and many more…

Children's Health

Infectious Diseases Management Program at UCSF

Antibiotic Stewardship Program

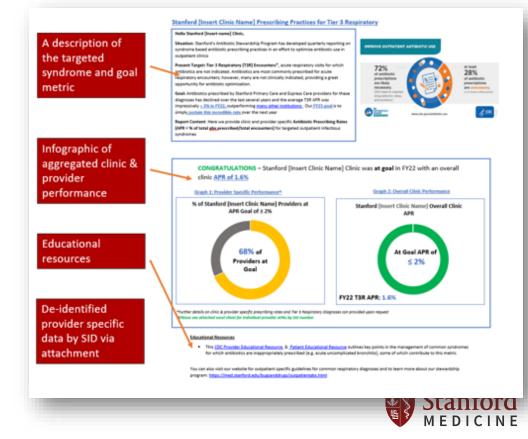
Peer Comparison

- Stepped wedge cluster randomized trial
- 30 primary care clinics in UPenn Health System, >185,000 visits
- Interventions:
 - Education (RTI prescribing + Communication skills)
 - Provider Feedback (monthly performance emails relative to peers)

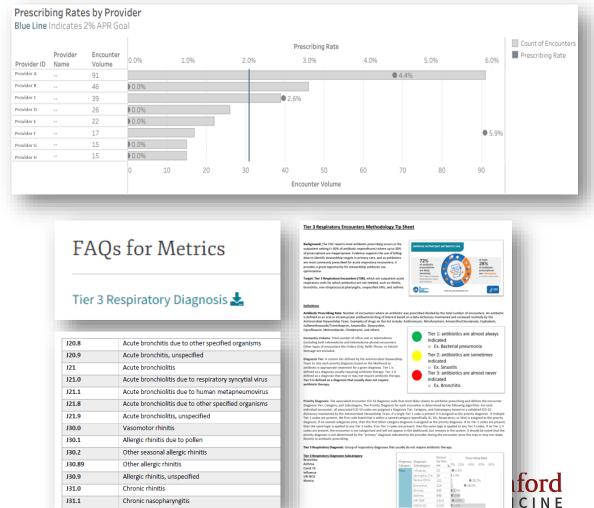
↓ Overall APR (35.2% → 23%)

↓ Abx Rx for Tier 2 and 3

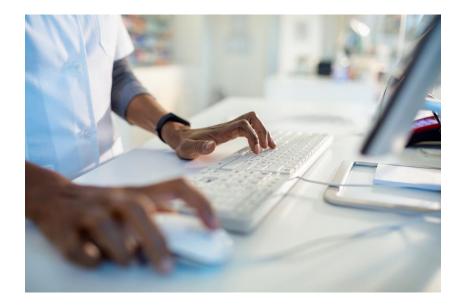
↓ Bronchitis APR
 (75.3% → 49.6%)


↔ Abx Rx for Tier 1

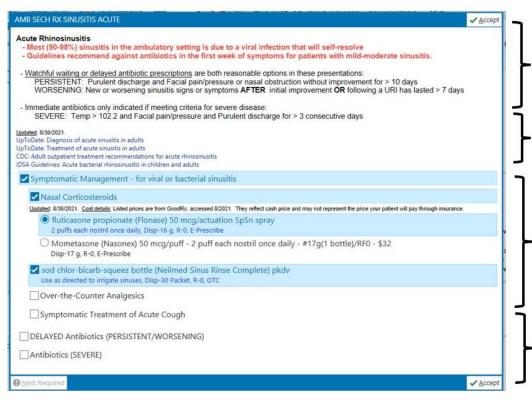
Dutcher et al. CID 2022


Feedback and Peer Comparison at Stanford

- Quarterly reports to clinic medical directors
- Targets: Non-bacterial (tier 3) respiratory, Sinusitis, Skin Infections, etc.
- Overall clinic performance
- % of providers at goal


Feedback and Peer Comparison at Stanford

- Blinded prescriber feedback relative to peers
- Reference document with detailed methodology on public website
- Mechanism for clarifying data with ASP team


Clinical Decision Support

- Suggested Alternatives
- Accountable Justification

Suggested Alternatives

Instructions from Stewardship: When are ABX appropriate?

Links to relevant webpages

Symptomatic therapies:

- Nasal sprays defaulted
- Additional order panels for analgesics, cough

Antibiotic Orders

- Labeled for specific scenarios
- Delayed ABX orders

Slide Courtesy of Amy Chang, PharmD, MD

Accountable Justification

Alert!

The antibiotic ordered does not appear indicated for the infection: **Bronchitis (J20.9)**

Discontinue antibiotic

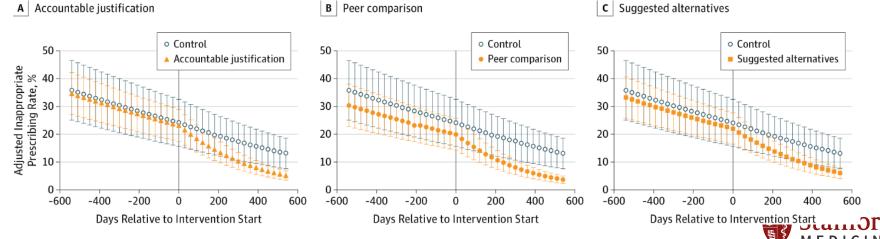
Continue to prescribe, Please document rationale below:

Rationale

Clinical Decision Support

- Cluster randomized trial
- 47 primary care practices, Boston and LA (248 clinicians), 2011-2014

Suggested Alternatives: -5.0%


(95% CI=-7.8% to 0.1%)

Accountable Justification: -7.0%

(95% CI = -9.1% to -2.9%)

Peer Comparison: -5.2%

(95% CI = -6.9% to -1.6%)

Meeker et al. JAMA 2016

Clinical Decision Support

- Make it hard to do the wrong thing
- Make it easy to do the right thing

🗘 Brad Spellberg Retweeted

Andrew Morris @ASPphysician

My point: telling MDs to not prescribe ABx for viral infections is useless. Totally useless. We need to focus on making it easier for them to do the right thing.

 \sim

Andrew Morris @ASPphysician · Nov 19

Is there a single family physician anywhere in the world who DOESN'T know you shouldn't treat viral infections with #antibiotics. Asking for a friend.

5:57 AM · Nov 20, 2019 · Twitter for iPhone

Morris A. Twitter 2019

Delayed Antibiotic Prescribing

WAIT. DO NOT FILL YOUR PRESCRIPTION JUST YET.

Your healthcare professional believes your illness may resolve on its own.

First, follow your healthcare professional's recommendations to help you feel better without antibiotics. Continue to monitor your own symptoms over the next few days.

🔵 Rest.

Drink extra water and fluids.

) Use a cool mist vaporizer or saline nasal spray to relieve congestion.

For sore throats in adults and older children, try ice chips, sore throat spray, or lozenges.

Use honey to relieve cough. Do not give honey to an infant younger than 1.

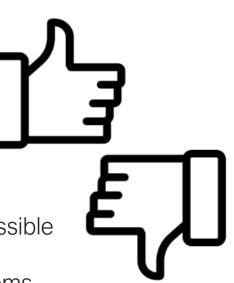
If you **do not feel better in _____ days/hours or feel worse,** go ahead and fill your prescription.

If you feel better, you do not need the antibiotic, and do not have to risk the side effects.

Delayed Antibiotic Prescribing

- Open label RCT (n=405)
- 23 primary care centers in Spain
- Acute, uncomplicated URI
- Interventions (randomized to 1 of the following 4):
 - Immediate Rx
 - Delayed Rx patient fill on own
 - Delayed Rx clinic fill
 - No Antibiotic Rx

Intervention	% Used Antibiotic	Symptom Duration			
Immediate	91%	3.6 days (SD 3.3)			
Delayed Patient Fill	33%	3 days (IQR 3-6)			
Delayed Clinic Fill	23%	3 days (IQR 1-4)			
No Antibiotic	12%	4.7 days (SD 3.6)			



de la Poza Abad et al. JAMA Intern Med 2016

Delayed Antibiotic Prescribing

Pros

- Decreases antibiotic use
- Preserves patient satisfaction
 - May be more acceptable to clinicians
- Largely similar outcomes
- Cons
 - May not decrease antibiotic use to fullest extent possible
 - Some inappropriate use may still occur
 - Limited, variable signal of longer duration of symptoms
- Studied in:
 - Acute otitis media (Peds), URI, Acute Cough, Sinusitis

Education

Knowledge... and Skills

CDC Core Elements

CDC. 2019

The Core Elements of **Outpatient Antibiotic Stewardship**

Commitment	Action	Tracking and Reporting	Education and Expertise
 Commitment Posters/Letters Identify single leader Include AMS- related duties in job description or evaluation Clinic staff set patient expectations 	 Evidence based diagnosis and treatment (guidelines) Delayed prescribing or Watchful waiting Communications training Written justification for antibiotic prescribing Provide clinical decision support Triage and prevent unnecessary visits 	 Monitor and evaluate prescribing practices Feedback to clinicians Share quality measures from health care plans and payors (i.e., HEDIS) 	 Clinician education (i.e., academic detailing, CE) Patient education Access to consultants

Prelude to Education... Knowledge vs. Perception

What is the Appropriate Antibiotic Therapy for a Viral Upper Respiratory Infection?

- Amoxicillin
- Amoxicillin/Clavulanate
- Levofloxacin
- No Antibiotics Are Indicated

What is the Appropriate Antibiotic Therapy for a Viral Upper Respiratory Infection?

- Amoxicillin
- Amoxicillin/Clavulanate
- Levofloxacin
- No Antibiotics Are Indicated

What is the Appropriate Antibiotic Therapy for a Viral Upper Respiratory Infection?

- Amoxicillin
- Amoxicillin/Clavulanate
- Levofloxacin
- No Antibiotics Are Indicated

What proportion of primary care clinicians would get this question wrong on a test?

Knowledge Deficit or Something Else?

- Qualitative study of 36 PCPs (physicians and APPs)
- Interviews explored:
 - Antibiotic drug selection for common infections
 - Antibiotic resistance
- Domains assessed:
 - Knowledge
 - Attitudes
 - Self-reported Practices

PCPs familiar with guideline recommendations but did not always follow them

Concern for patient satisfaction

Fear of infectious complications

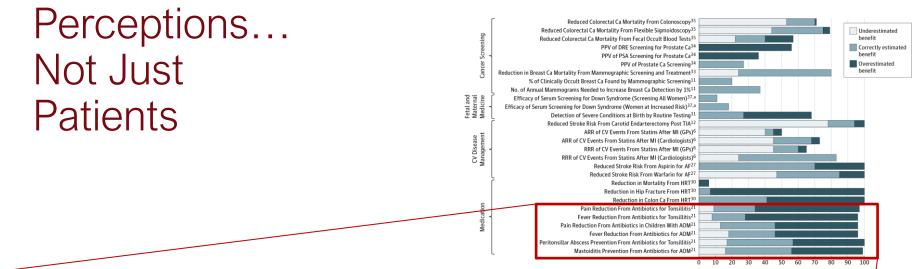
Belief that non-recommended agents were superior

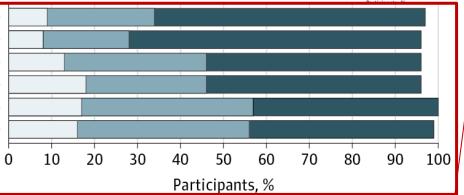
Widespread concern for AMR but did not factor into decision-making

Sanchez et al. Emerg Infect Dis 2014

Patient and Parent Perceptions of Antibiotics

- ...would try antibiotics "if I think there's even a chance that I'll get better quicker"
- "When I take them, I don't imagine that there are any, like real risks. I'm sure that there are, but I don't think that there are"
- When you don't feel good, you're looking for anything to help... anything that will provide you some sort of relief
- If kids need [antibiotics], they need it. I had a cousin who was along those lines and was just doing drops in her baby's ears when the baby clearly had an ear infection, and the boy ended up having all these hearing problems. So, I guess I caution on the side of if they need it, they need it, and we have to keep them safe.


Expectation... and Expectation of Expectation


Clinicians tend to over-estimate patient expectations of antibiotics and prescribe more antibiotics when they anticipate the expectation

Author, Year	N visits	N phys	icians Odd	ds ratio (95% CI)	Author, Year	N visits	N phys	sicians		Odds	ratio (95% CI)
Mangione-	200	10*		14/02 60	Akkerman, '05b (tonsillitis)	206	146*	=1		1 7	1.7 (1.1, 2.6)
Smith, 1999	306	10*	OR 1.4	1.4 (0.3, 6.0)	Akkerman, '05b (sinusitis)	181	146*	m t	OR 3	L./	2.0 (1.4, 2.8)
Coenen, 2013	2690	387*	•	2.1 (1.5, 2.9)	Akkerman, '05a (acute otitis media	458	146*	IB H	•		2.1 (1.5, 3.0)
Lindor 2002	295	NR*	L to 9.9	21/11 44	Akkerman, '05b (bronchitis)	526	146*	-	to)	2.1 (1.7, 2.6)
Linder, 2003	295	INR.		2.1 (1.1, 4.4)	Coenen, 2013	2690	387*		·		2.2 (8.3, 17.8)
Moro, 2009	359	NR*	·	9.9 (3.1,31.4)	Moro, 2009	4352	146*		⊶ 23.	12	.8 (10.4, 15.8)
					Coenen, 2006	1448	72*		H	→ 20	0.8 (8.9, 49.0)
			0 4 8 12 16 20 24 28 32 36		Mangione- Smith, 1999	306	10*	-		→ 23	.3 (3.5, 154.7)
			Odds ratio		Looper and the for the second states			rinn A A	8 12 16 20 24 2	28 32 36	
								0 4	Odds ratio	an 1909 - 209	
				Altine	r Fam Pra	ct 2	004;	Mc	Cay et al. A	AC 201	

(g) Odds of antibiotic when patient expecting antibiotics

(h) Odds of antibiotic when clinician perceives patient expectation

Stanford

Pain Reduction From Antibiotics for Tonsillitis²¹ Fever Reduction From Antibiotics for Tonsillitis²¹ Pain Reduction From Antibiotics in Children With AOM²¹ Fever Reduction From Antibiotics for AOM²¹ Peritonsillar Abscess Prevention From Antibiotics for Tonsillitis²¹ Mastoiditis Prevention From Antibiotics for AOM²¹

> 40-70% Overestimated Benefit

Hoffman and Mar. JAMA Intern Med 2017

Communication Skills Training

- Cross-sectional study
- 10 pediatric practices in Seattle
- Post-RTI visit surveys of both providers and parents

Positive Recs (symptom reduction) **aRR 0.48** (95% CI 0.24-0.95)

Positive (symptom reduction) + Negative (Ruling out need for antibiotics) Recs **aRR 0.15** (95% CI 0.06-0.40)

- 359 adult general practices in Belgium
- Training focused on RTIs + use of CRP
 - Web-based with video content
 - In-depth (INTRO) + brief (TRACE)

↓APR 7% (TRACE)

Effect most pronounced 1 month post training, faded over months 2-6

Mangione-Smith et al. Ann Fam Med 2015; D'Hulster et al. JAC Antimicrob Resist 2022

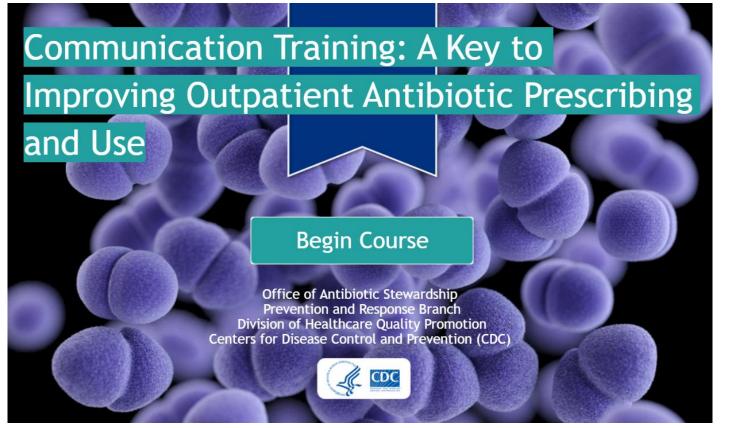
Dialogue Around Respiratory Illness Treatment (DART)

Review Physical Exam Findings	<i>"Her ears look good and lungs sound great, no sign of pneumonia. Nose is fairly congested though and throat is red but nothing concerning for Strep throat."</i>				
Deliver Clear Diagnosis	"What we have here is a cold"				
Negative Treatment Recommendation	<i>"This is a cold, caused by a virus, nothing an antibiotic can help with"</i>				
Positive Treatment Recommendation	"But raising the head of the bed will help with the drainage so she won't cough as much"				
Provide Contingency Plan	"I want you to call me right away if she develops high fevers or has a hard time catching her breath. I don't expect this, but that is what you should watch for."				

University of Washington. https://www.uwimtr.org/dart/

Dialogue Around Respiratory Illness Treatment

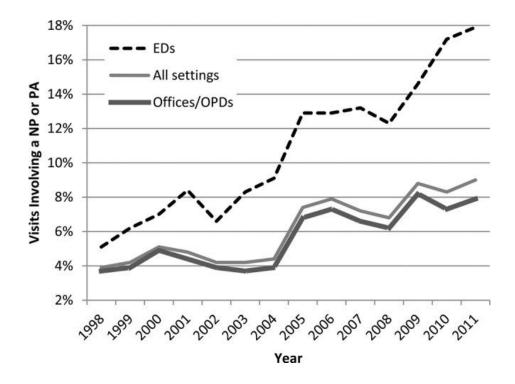
University of Washington. https://www.uwimtr.org/dart/


The Primary Care Office Visit: Antibiotics

- 55 Play as a Patient () Play as a Physician 🕑 Talk to a virtual physician and learn Talk to a virtual patient and see how well about the proper use of antibiotics, how you do in building trust, collaborating on to make sure you get answers to your a treatment plan, and addressing the questions, and leave the office with a patient's request for antibiotics. plan that works for you.

Created by Kognito with the generous support of the Robert Wood Johnson Foundation

Robert Wood Johnson Foundation. https://www.conversationsforhealth.com/antibiotics/



CDC. https://www.cdc.gov/antibiotic-use/training/continuing-education.html

Your Audience Should Include APPs

APPs prescribed 14% of all antibiotic prescriptions in 2011 ...and... >30% in 2020

Sanchez et al. OFID 2016; Hersh et al. ICHE 2023

Academic Detailing (Retrospective Audit & Feedback)

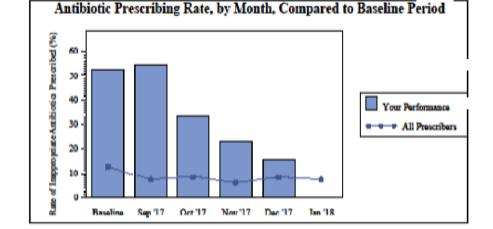
- Cluster randomized trial
- 140 general practices in Switzerland
- Interventions:
-) Guidelines for
 - Respiratory and Urinary Infections
- Individualized Feedback on Antibiotic Prescribing for 2 Years

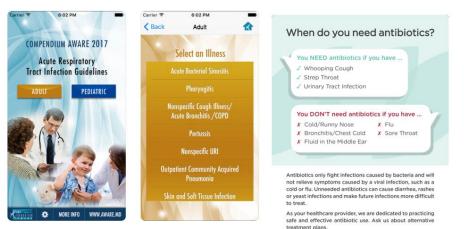
↔ APR for sinusitis, URI

↔ FQs for eCOPD

个 PCNs for RTIs (57% vs. 49%)

个 TMP/SMX for uUTI (35% vs. 19%) – guideline adherent




Hurlimann et al. JAC 2015

Putting It All Together

- LA County DPH
- Targeting Appropriate Prescribing in Outpatient Settings (TAP OUT)
 - Respiratory Conditions
 - i.e., bronchitis, URI, rhinitis, cough, nasopharyngitis, influenza
- Interventions:
 - Peer Comparison
 - Self Comparison
 - Communication Training
 - Commitment Posters
 - App-Based Guidelines

WEDICINE

TAP OUT Outcomes

7,446 Encounters

APR 15.3% \rightarrow 7.3%

Relative Reduction = 52%

(p<0.0001)

Antibiotic prescribing rate for acute upper respiratory infections, by respiratory season

20.0% 15.0% 10.0%

Urgent Care ↓55% Internal Medicine ↓45%

0.0%	October	November	December	January	February	March	April		
	12.3%	13.0%	15.6%	17.8%	15.5%	16.1%	14.1%		
Encounters for which antibiotics were prescribed, 2016-17	98	103	165	256	183	194	137		
Eligible encounters, 2016-17	800	795	1055	1436	1178	1207	975		
> •2017-18	8.2%	8.6%	9.0%	7.9%	5.5%	7.2%	8.9%		
 Encounters for which antibiotics were prescribed, 2017-18 	71	83	112	143	79	117	90		
Eligible encounters, 2017-18	894	968	1255	1899	1545	1614	1343 ₇		

0.00

Content courtesy of James McKinnell, MD

TAP OUT Resources

 Resources available at: http://publichealth.lacounty.gov/acd/ TAPOUT.htm

Behavioral insights to curtail antibiotic overuse Jason N. Doctor, PhD

Appropriate Treatment of Common Infections in Primary Care

James McKinnell, MD Infectious Disease Specialist

Associate Professor at the David Geffen School of Medicine, UCLA

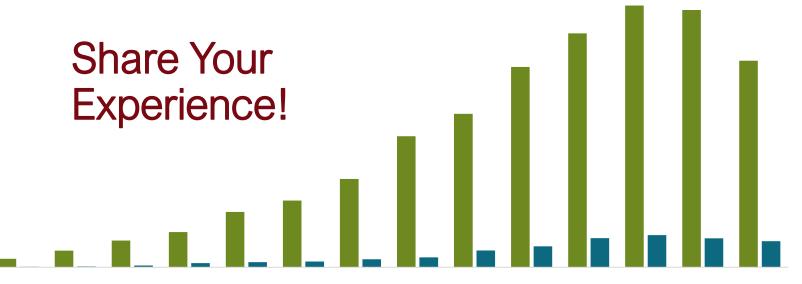
Consulting Specialist, Acute Communicable Disease Control at the LA County Department of Public Health

National Center for Emerging and Zoonotic Infectious Diseases

MEDICINE

Antibiotic Stewardship in the Outpatient Setting

Katherine Fleming-Dutra, MD



Office of Antibiotic Stewardship Division of Healthcare Quality Promotion National Center for Emerging and Zoonotic Infectious Diseases Centers for Disease Control and Prevention

Content courtesy of James McKinnell, MD

Publications Per Year (PubMed)

Inpatient Stewardship
Outpatient Stewardship

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

PubMed.gov (Accessed October 2023)

Acknowledgements

- James McKinnell, MD
- Marisa Holubar, MD
- Mary Smith, MD
- Amy Chang, PharmD, MD

