Combination Therapy for Serious Infections:
Staphylococcus aureus

George Sakoulas, MD

Professor of Pediatrics
UC San Diego School of Medicine
La Jolla, CA

Infectious Diseases Clinician
Sharp Healthcare
San Diego, CA
Limited

CLINICAL TRIALS
Once a disease target is identified, drugs are designed and tested. Both public and privately funded research are involved.

REGULATORY APPROVAL
Human trials are completed. FDA approval. Industry is responsible for bringing a drug to market. Safety and evaluation continue after approvals.

BASIC RESEARCH
The majority of the research at this stage is publicly funded at universities, colleges and independent research institutions in every state.

17 years Process
Questions to Consider in Combination Therapy…

• Why Talk About Combination Antibiotic Therapy to Treat Bacterial Infections?
• Do we use combination therapy to treat some infections currently?
• If so, why is it such a big deal when the concept is introduced to clinicians?
• Why are serious S. aureus infections a good example where combination antibiotic therapy should be considered?
The Beginning of the Modern (Human) Antibiotic Era

1943 - 4 year old.
There was never a comparator—does that matter?
Why 14 days?
How different were patient hosts in 1943 vs the 21st century?
How many beta-lactam resistant bacterial pathogens were clinically relevant in the 1940’s?

Herrell '43 Proc Staff Meetings Mayo Clinic 18:65-76
March 1942

Life Expectancy at Birth

1st Clinical Use of Penicillin
March 1942
Age Distribution: 1940 and 2010

<table>
<thead>
<tr>
<th>Year</th>
<th>Under 18</th>
<th>18-44</th>
<th>45-64</th>
<th>55+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940</td>
<td>30.6</td>
<td>42.8</td>
<td>19.8</td>
<td>6.8</td>
</tr>
<tr>
<td>2010</td>
<td>24.0</td>
<td>36.5</td>
<td>26.4</td>
<td>13.0</td>
</tr>
</tbody>
</table>

Sources: U.S. Census Bureau, 1940 Census and 2010 Census.
Consequence of Medical Progress: Age Senescence of Innate Immunity

Incidence of IE

Does the Human Innate Immune System Have an Approximate 6 Decade Shelf Life??

Sepsis CAP UTI
COVID-19 Mortality by Age

- Number of patients
- Fatality (%)
Combating Antimicrobial Resistance Means We Have Set Our Targets and Hit the Mark

PATIENT
- Age
- Comorbid Conditions
- Immune Status
- Site of Infection

DRUG
- Pharmacokinetics
- Pharmacodynamics

BUG
- Susceptibility by Minimum Inhibitory Concentration (MIC)

‘Dead Bugs Don’t Mutate’
Rationale for Combination Antibiotic Therapy

- Synergy: More potent and efficient killing of bacteria (1+1>2)
 - Immunocompromised hosts
 - High inoculum
 - Attack bacteria in different ‘compartments’ (eg. intracellular vs extracellular; biofilms)
 - Target different aspects of pathogenesis (eg. killing; virulence attenuation)

- Broaden spectrum of activity
 - Empiric regimen
 - Beta-lactamase inhibitors

- Reduce the likelihood of antimicrobial resistance
 - High inoculum
 - Organism-specific concerns

- Reduce the incidence of side-effects
 - Reduce dose and boost pharmacodynamics

- Reduce costs
 - Pharmacodynamic boosting of a costly single agent by a second cheaper agent
 - Shorten duration of hospitalization
Factors Determining A Successful Outcome in the Treatment of Infection

Burden of Infection (inoculum)

Host Immunity
- Age
- Immunosuppression

Pathogen
- Virulence (invasion/evasion)
- Antimicrobial Resistance
- Infecting Site

Surgical Source Control

Antibiotic Properties: MIC (S vs R)
- Bactericidal vs Bacteriostatic
- PK/PD
- Penetration into biofilms
- Activity against ‘inert’ forms
- Synergy with Innate Immunity

Duration of Therapy

(distance, speed, time)
REFRACTORY MRSA BACTEREMIA
Rapid MRSA Bacteremia Clearance with High-Dose Daptomycin plus a β-lactam

*Relapsed – 12 wks & 8 wks post-therapy – 1 cleared w/another course; 1 died w/VISA PV IE VAN MIC 3; DAP MIC 1.5
Red VISA; DAP MIC 2-4 - Additional studies performed on the isolates from this case

Daptomycin binds Ca$^{2+}$ in vivo as an integral part of its mechanism of action – i.e. it becomes a de facto cationic peptide.

Cationic antimicrobial peptides are a critical component of mammalian innate immunity.

Nizet V. Curr Issues Mol Biol 8:11-26
Potential beneficial effects of β-Lactam antibiotics not reflected in MIC

- Reduced peptidoglycan O-acetylation
- Reduced peptidoglycan crosslinking
- Decreased shedding of membrane phospholipids
- Decreased expression of MSCRAMMs (e.g., CIA, FnBPA)
- Increased α-toxin release
- Increased lipoteichoic acid shedding

- Increased bacterial susceptibility to lysozyme killing
- Increased cell membrane access
- Reduced invasion of epithelial and endothelial cells
- Activation of the NLRP3 inflammasome
- Increased host macrophage cytokine release
- Increased IL-1β response
- Improved neutrophil recruitment
- Reduced neutrophil apoptosis

Potentiation of cationic host defense peptides
Potentiation of peptide antibiotics (e.g., daptomycin)
Increased TH17 response
Increased neutrophil antibacterial functions
Enhanced clearance of S. aureus bacteremia

CAMERA-2 Study: A Rigorous Look At Combination Therapy for MRSA

- MRSA Bacteremia
- August 2015 - July 2018, 352 adults, 27 sites, 4 countries (Australia, New Zealand, Singapore, and Israel)
- Monotherapy Vancomycin or Daptomycin VS plus an Combination with anti-staphylococcal β-lactam (flucloxacillin, cloxacillin, or cefazolin)
- Mention of daptomycin is highly deceiving
- Vast Majority of combination received vancomycin + flucloxacillin
 - 171/174 (98%) combination group
 - 178/178 (100%) monotherapy group
- Stopped Early Due to Safety Concerns

Tong et al. JAMA Feb 2020
CAMERA-2 Study

- 30% developed acute kidney injury vs 9% in the standard therapy arm
- Increased 90-day mortality in the combination arm vs the standard therapy arm (21% vs 16%)
- Combination arm had less bacteremia persistence, consistent with CAMERA-1
- NOT REALLY THE END OF THE COMBINATION THERAPY DISCUSSION

Tong et al. JAMA Feb 2020
Putting the CAMERA Under the Microscope
Mortality in MRSA Bacteremia: Where Did CAMERA-2 Fall?

Tong et al. 2020 Feb 11;323(6):527-537
CAMERA 2 Did Not Have the Study Population to Answer the Combination Therapy Question

Tong et al. 2020 Feb 11;323(6):527-537
The Real Take Home Message of CAMERA-2
AKI With Vancomycin and Beta-Lactams

![Bar chart comparing Flucloxacillin, Cloxacillin, and Cefazolin](chart.png)

- **Flucloxacillin:** 25/90
- **Cloxacillin:** 5/21
- **Cefazolin:** 1/27

Statistical Analysis:

- **P=0.008** Cefazolin vs Flucloxacillin + Cloxacin
- **P=0.007** Cefazolin vs Flucloxacillin
- **P= 0.07** Cefazolin vs Cloxacillin

Tong et al. 2020 Feb 11;323(6):527-537
153 Monotherapy, 444 Combination Therapy (Mostly with cephalosporins)
14% Nephrotoxicity In Both Groups (15% Pip/tazo, 3% Amp/Sulbactam)
Multivariate logistic regression model predictive of clinical failure
- Endocarditis 3.294 (2.115-5.132)
- APACHE II Score 1.045 (1.029-1.072)
- Combination Therapy 0.545 (0.364-0.817)
Multivariate logistic regression model predictive of persistent bacteremia
- Endocarditis 3.331 (2.132-5.205)
- Source Control 1.236 (0.828-1.844)
- Combination Therapy 0.597 (0.393-0.907)
Comparison of Clinical Outcomes Between Patients in Pre-pathway or Post-pathway

Proximal Tubular Cells

BLOOD

TUBULAR LUMEN

Nephrotoxic

Cephaloridine

BLOOD

TUBULAR LUMEN

Cephalothin, Cefaclor

BLOOD

TUBULAR LUMEN

Cephaloglycin, Cephalexin

BLOOD

TUBULAR LUMEN

Ceftazidime (minimal)

BLOOD

• OAT-3 is important in renal and CSF beta-lactam transport

• Used cells expressing mouse and human OAT-3 to assess interactions with 26 beta-lactams
 • 12 inhibitors
 • 14 poorly interactive

• The beta—lactam that were inhibitors were also substrates

• OAT-3 interactive antibiotics were lipophilic (log partition coefficient +1.41 inhibitors vs -1.54 for non-inhibitors)

• Beta-lactams that interact with OAT-3 correlate with nephrotoxicity
 • Piperacillin 0.737
 • Ampicillin -0.873
In 1900 Ernst Overton found entry of dyes through cell membranes of living cells predicted lipophilicity. This predicts beta-lactam CSF penetration (and likely proximal tubule accumulation and vanco-associated nephrotoxicity).
Vancomycin induces reactive oxygen species-dependent apoptosis via mitochondrial cardiolipin peroxidation in renal tubular epithelial cells

Yuya Sakamotoa,b,1, Takahisa Yanoc, 1, Yuki Hanadaa, Aki Takeshitaa, Fumika Inagakia, Satohiro Masudab,c, Naoya Matsunagad, Satoru Koyanagid, Shigehiro Ohdoa

Concentration and Time-Dependent Vancomycin Cytotoxicity

![Graph showing cell viability over different concentrations of vancomycin](image1)

Vancomycin Mitochondrial Cardiolipin Peroxidation

![Graph showing time-dependent peroxidation](image2)

Porcine Proximal Tubular Epithelial Cell line LLC-PK

http://dx.doi.org/10.1016/j.ejphar.2017.02.025
Using Ceftaroline as the Beta-Lactam in Daptomycin Combination Therapy in MRSA Bacteremia

Case Series Salvage Regimen
Antimicrobial Stewardship
Pharmacist Emoji
Prospective Randomized Study of Vancomycin vs DAP+CPT in MRSA Bacteremia

Expensive
 Limitations on Disposition
 Third Party Payors
 Subacute Nursing Facilities

Cumbersome
 Many Doses

More drugs = more risk of medical errors and AE’s

CAN DAP+CPT BE TARGETTED TO HIGH-RISK PATIENTS?

HOW TO IDENTIFY HIGH RISK PATIENTS UP FRONT?
Cytokines Predicting Mortality in SaB

• Multi-omic analysis of *S. aureus* bacteremia captured strong mortality biomarkers

• Clustering of proteins and metabolites highlights host metabolic dysfunction

• Therapeutic interventions of host metabolism can influence survival

Induction->Consolidation Paradigm

• MRSA Bacteremia is a dynamic condition, so therapy must be dynamic
• Combination therapy at the beginning to de-escalation to monotherapy
• One small study of 30 patients rx with combo: 15 de-escalated to monotherapy, 15 remained on combination
 • Median bacteremia duration preceding CPT 6 days
 • 1 recurrence in monotherapy; 2 30-day readmission monotherapy; 1 death monotherapy, 3 deaths combo
 • Ahmad O et al. Infect Dis Ther. 2020 Mar;9(1):77-87
• Factors to consider:
 • Bridge to definitive source control (eg. left-sided IE with CNS emboli)
 • Bacteremia cleared 5-7 days
 • Time to discharge and disposition (home vs SNF vs LTAC)
 • CRP reduced >50%
Beta-Lactams in MRSA

• Important adjuncts to daptomycin backbone
• Some are using vancomycin backbone with improved outcomes
• Vancomycin + cephalosporin > Vancomycin + Penicillin due to nephrotoxicity
• How do anti-staphylococcal beta-lactams compare to ceftaroline when added to daptomycin?

• COMBINATION THERAPY IS NOT REQUIRED FOR THE WHOLE DURATION
 • De-escalate to vancomycin (eg LTAC/SNF)
 • Single therapy
 • CRP reduction >50%
Daptomycin+Fosfomycin

• Randomized 1:1 open label 18 medical centers in Spain
• Daptomycin 10 mg/kg IV QD+ Fosfomycin 2g IV Qhr vs Daptomycin 10 mg/kg alone
• Treatment success day 7, day 42
• 6 weeks: Combo 40/74 (54%) vs Mono 34/81 (42%)
• 7 days: Combo 69/74 (93%) vs Mono 62/81 (77%)
• Combo lower rate of microbiological failure at 6 weeks: 0 vs 9 patients (p=0.009)
• 578 patients with high-risk SaB, 313 (54%) received combination therapy
• Evaluated composite outcome of 90-day all-cause mortality plus rates of late complications at 180 days
• 242 received combination with rifamycin; 58 with IV fosfomycin.
• Combination therapy better composite outcome (hazard ratio, 0.65; 95% confidence interval, 0.46–0.92).
• Primary benefit was seen in patients with biomedical devices (HR, 0.53; 95% CI, 0.35–0.79).
• Fosfomycin and rifampicin had similar outcome benefits
REFRACTORY MSSA BACTEREMIA
• 32 yo IVDA but otherwise healthy admitted with worsening fevers x 1 week
• Accompanied by SOB, lethargy
• Found to have leukocytosis, tachycardia, hypotension, admitted to ICU
• Vancomycin+ceftriaxone for 1st 24 hrs
• Blood Cx GPC->ID called->Ceftaroline 600 mg iv q8 hr+ Dapto 8 mg/kg/24 hr x 24 hr
• Verigene Show MSSA in 24 hrs->Nafcillin 2g iv 4 hr
• Imaging Chest, Abdomen, Pelvis: Multifocal pneumonia suggestive of septic pulmonary emboli, some early cavitation
• TEE shows 3.2 cm tricuspid valve vegetation
• Blood Cultures Remain + Despite 5 days nafcillin
• Ertapenem 1g iv q24 hr + cefazolin 2g iv q8hr →Blood cultures clear in 24 hrs!!
• Angiovac was performed→Partial success in debulking the Tricuspid Valve
• Signed out AMA after 4 weeks in the hospital
Consider DAP + Beta-lactam But May Be Antagonistic in MSSA

Carbapenem

Cefazolin
MSSA RAT ENDOCARDITIS MODEL

FUTURE THERAPY COMBINATIONS

- Not necessarily with two antibiotics
- Host response therapies
- Virulence Neutralization
- Repurposing Drugs Used by Other Specialists
Exebacase for patients with Staphylococcus aureus bloodstream infection and endocarditis

Vance G. Fowler Jr., ... , Pamela S. Douglas, Cara Cassino

Graphical abstract
Repurposed Drugs Block Toxin-Driven Platelet Clearance by the Hepatic Ashwell-Morell Receptor to Clear *Staphylococcus aureus* Bacteremia

Josh Sun1,2,3*, Satoshi Uchiyama4, Joshua Olson1, Yosuke Morodomi6, Ingrid Cornax1, Nao Ando1, Yohei Kohno1, May M. T. Kyaw1, Bernice Aguilar1, Nina M. Haste1,2,3, Sachiko Kanaji4, Taisuke Kanaji4, Warren E. Rose3, George Sakoulas2, Jamey D. Marth6,7, Victor Nizet1,2,3*

SA α-toxin-mediated platelet clearance compromises host defense

Ticagrelor and oseltamivir preserve platelet counts and antibacterial function
A CASE OF MSSA BACTEREMIA AND PLATELETS

Platelets (×1000/mm³)

Day

Ticagrelor Therapy
MSSA Bacteremia

Platelet Killing of *S. aureus*

Figure 1. Ticagrelor (TICA) boosts the bactericidal activity of platelets, frontline components of innate immunity, to kill methicillin-susceptible *S. aureus in vitro* at physiological attainable concentrations (1 μM).
Summary and Conclusions

- Clearly in some more difficult cases of S. aureus bacteremia, combination therapy is better than monotherapy (membrane+cell wall agent; complementary beta-lactams)
- As in most cases of optimal therapy, benefit declines with delays in use
- Unfortunately, days go by until difficult cases define themselves during which the patient’s clinical status and prognosis may decline
- An important goal of future studies will be the a priori identification of challenging cases before they become challenging
- Concept of ‘Induction’ and ‘Consolidation’ Phases of Treatment for SaB
 - Beginning/Middle/'Mop up’ Regimens
- Future therapies will need to consider host-virulence factor attenuation
- Lysin Therapy
- Phage Therapy
Questions to Consider…Answers

• Why Talk About Combination Antibiotic Therapy to Treat Bacterial Infections?
 • Some infections are treated more successfully when using multiple antibiotics (high inoculum size, host level of immunosuppression)
 • Monotherapy Infection Treatment Paradigms Were Established At A Time With More Immunologically Robust Hosts

• Do we use combination therapy to treat some infections currently?
 • Routine in malaria, HIV, Tuberculosis, Early Fungal Meningitis

• If so, why is it such a big deal when the concept is introduced to clinicians?
 • Treatment and diagnostic paradigms that are decades old are very difficult to change
 • Identifying the subset of infections that benefit with 2 vs 1 antibiotics are difficult in broad clinical trials (granularity issue)
 • Antibiotic drug acquisition costs
 • Concern for resistance when using antibiotics

• Why are serious S. aureus infections a good example where combination antibiotic therapy should be considered?
 • High inoculum bloodstream infections do not respond well to single therapy
 • Adjunctive antibiotics may potentiate immune clearance
 • Small low-powered study was able to show a mortality benefit