Beyond the Basics: Updates in Treatment of Resistant Gram Negative Infections

Conan MacDougall, PharmD, MAS
Professor of Clinical Pharmacy
University of California San Francisco School of Pharmacy
Infectious Diseases Pharmacist Specialist
University of California Medical Center

Disclosures

Research funding from Merck

What we will cover: Key points

- IDSA has new expert guidance on management of GNRs use it! For serious infections:
 - ESBLs: carbapenems >>> other beta-lactams
 - AmpC producers: carbapenems ~ cefepime
 - Pseudomonas: dose-optimized beta-lactams or CTOL/TZB, CTZ/AVI, IMI/REL
 - KPCs: MER/VBR, CTZ/AVI, IMI/REL, CFDC
 - NDMs: CTZ/AVI + Aztreonam, CFDC
 - Carbapenem-resistant Acinetobacter: AMP/SUL + (something), [SUL/DUR]
- Mechanism and MIC both matter
 - S does not always equal success & sometimes R can be overcome!

What we won't cover:

- Effectiveness of non-beta-lactams for serious MDR infections
- IDSA expert guidance on:
 - Stenotrophomonas maltophila

First, quick β-lactamase refresher

	Beta-lactamase Groups						
Functional Group		1	2				3
Molecular Class		С		Α		D	В
Subclass	(WT)	(DR)	2b	2be (ESBL)	2f	2df	
Example Enzymes Names you should know	A	mpC	TEM-1, SHV-1	CTX-M, SHV- 2, TEM-2	KPC-1	OXA-48	NDM-1
Hydrolytic activity (predic	cted phenoty	pe) vs beta-lact	ams				
Aminopenicillins	+++(R)	+++ (R)	+++ (R)	+++ (R)	+++ (R)	+++ (R)	+++ (R)
Piperacil in How well	+ (s)	++ (r/R)	++ (r)	+++ (R)	+++ (R)	+++ (R)	+++ (R)
1 st /2 nd G hydrolyzes drug	+++ (R)	+++ (R)	+ (s)	Likely bug-drug phenotype	+++ (R)	++ (r/R)	+++ (R)
3 rd /4 th GC	+ (s)	++ (r/R)	(S)	++ (r/R)	+++ (R)	+ (s/r)	+++ (R)
Monobactams How well	+ (s)	+++ (R)	(S)	+++ (R)	+++ (R)	(S)	(S)
Penems inhibitor inhibits BLmase	(S)	(S)	(S)	(S)	++ (r/R)	++ (r/R)	++ (r/R)
Other characteristics							
Inhibition by clavulanate			+++	++			
Inhibition by avibactam	+++	++	+++	+++	++	++	
Typical Location/Expression		mal/ Inducible nstitutive	Plasmid / Constitutive				
Active site			Serine Metallo (Zn)				

AY is a 77 yo M nursing home resident with DM2, HTN and recent paraplegia c/b urinary incontinence with a new fever and hypotension. He was transferred to UCSF, admitted to the ICU, & started on vanco and cefepime. UCX & BCX are growing *Proteus mirabilis*, with susceptibility results show below.

Urine: >100,000 *Proteus mirabilis*

Ampicillin >16 R

Ampicillin/sulbactam >16/8 R

Aztreonam >16 R

Cefazolin>16 R

Ceftazidime >16 R

Ceftriaxone >32 R

Cefepime 4 S-DD

Ertapenem <= 0.25 S

Imipenem 21

Meropenem <= 0.5 S

Piperacillin/tazobactam 16/4 S-DD

What beta-lactamase enzyme do you think this organism is producing?

What antibiotic(s) would you recommend for AY?

a) Cefepime

b) Ertapenem

c) Imipenem

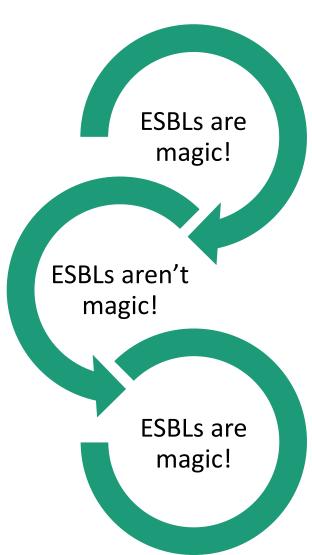
d) Meropenem

e) Piperacillin/tazobactam

Blood: Proteus mirabilis

Ertapenem ≤0.25

				Ве	eta-lactamase Gro	oups		
Urine (UCSF) >100,000 Proteus mirabilis	Functional Group		1		2			3
Ampicillin >16 R	Molecular Class		С		Α		D	В
Ampicillin/sulbactam 16/8 I	Subclass	(WT)	(DR)	2b	2be (ESBL)	2f	2df	
Aztreonam >16 R Cefazolin>16 R	Example Enzymes	A	mpC	TEM-1,	TEM-3,	KPC-1	OXA-48	NDM-1
Ceftazidime >16 R	I ludualistia activitus va	hata laataw	o (muselisted m	SHV-1	SHV-2, CTX-M			
Ceftriaxone >32 R	Hydrolytic activity vs	T		1 7	(D)	(D)) (D)	(D)
Cefepime 4 S-DD	Aminopenicillins Piperacillin	+++ (R)	+++ (R) ++ (r/R)	+++ (R)	+++ (R) ++ (r/R)	+++ (R)	` '	+++ (R)
Ertapenem <=0.25 S	1 st /2 nd GC	+ (s) +++ (R)	+++ (I/R) +++ (R)	++ (r) + (s)	+++ (I/R) +++ (R)	+++ (R) +++ (R)	` '	+++ (R) +++ (R)
**Imipenem 2 I **	3 rd /4 th GC	+ (s)	++ (r/R)	(S)	++ (r/R)	+++ (R)		+++ (R)
Meropenem <=0.5 S	Monobactams	+ (s)	+++ (R)	(S)	+++ (R)	+++ (R)	<u> </u>	(S)
Piperacillin/tazobactam 16/4 S-DD	Penems	(S)	(S)	(S)	(S)	++ (r/R)		++ (R)
Blood (UCSF) <i>Proteus mirabilis</i>	Other characteristics	,	()	()				
Ertapenem ≤0.25	Inhibition by clavulanate			+++	++	/		
-3 rd -gen cephalosporin resistance but not carbapenem resistance	Inhibition by avibactam	+++	++	+++	+++	++	++	
-Variable activity of cefepime, pip/tazo, and amp/sulbactam	Common organisms	CA	APES		Ente	robacteria	aceae	
	Location	Chror	mosomal		Plasmid		Plasmid	Plasmid
-**NOTE: Proteus has low intrinsic susceptibility to imipenem specifically — this is not indicative of carbapenemase production**	Expression	Inducible -	→Constitutive		Constitutive		Constitutive	Constitutive


Perceived relationships between susceptibility results and clinical outcomes for ESBLs have see-sawed over the years

<u>Finding</u>: Association of CTX MIC with clinical failures with or without ESBLs, cohort studies of pip/tazo showing OK outcomes <u>Response</u>: Lower breakpoints, get rid of phenotypic tests, CTX-R as ESBL surrogate in PEK

cefepime?

Problem: Can we really use pip/tazo or

Key Reference: J Clin Micro 2019;56:e01917

<u>Finding</u>: Clinical failures in patients with CTX-S,

ESBL + isolates

Response: Phenotypic test for ESBL → change

cephalosporin $S \rightarrow R$

<u>Problem</u>: Breaks the S paradigm, requires extra

testing

<u>Key Reference</u>: J Clin Micro 2001;39:2206-2212

<u>Finding</u>: Association of pip/tazo with increased mortality vs mero for definitive tx of ESBL BSI <u>Response</u>: Carbapenems preferred for serious

ESBL infections

<u>Problem</u>: Less-severe infections, empiric therapy,

re-breaks the S paradigm

Key Reference: JAMA 2018;10:984-994 (MERINO

I)

MERINO I doesn't necessarily rule out all BLICs for ESBLs — CTOL is easier to protect than PIP & AVI is much better guardian of CTZ

So...if you have another reason to use a novel BLIC, it **should** cover ESBLs

Study	Drug	Vs	n (%) "ESBL"	Outcomes "ESBLs"
ASPECT-NP	CTOL/TZB	MER	157 (31%)	Clinical cure: 57.1% vs 61.6% (-4.5%, -19.3% - 10.7%)
ASPECT- cUTI	CTOL/TZB	LEVO	118 (14.8%)	Clinical cure: 62.3% vs 35.1% (27.2%, 9.2% - 42.9%)
MERINO III	CTOL/TZB	MER	100%	*TERMINATED (lack of CTOL/TZB + COVID)*
REPROVE	CTZ/AVI	MER	75 (21.1%)	Clinical cure: 82.4% vs 70.7% (11.6%, -8.32% – 30.2%)
RECAPTURE	CTZ/AVI	DOR	155 (19.1%)	Clinical cure: 63.2% vs 58.2% (5.0%, -10.9% - 20.5%)

The story likely isn't over yet as MERINO subgroup analyses proceed and a confirmatory trial is underway (PETERPEN)

Finding: Association of CTX MIC with clinical failures with or without ESBLs, cohort studies of pip/tazo showing OK outcomes Response: Lower breakpoints, get rid of phenotypic tests, CTX-R as ESBL surrogate in PEK Problem: Can we really use pip/tazo or cefepime? Key Reference: J Clin Micro 2019;56:e01917

Finding: Post hoc analysis of MERINO found smaller differences & influence of secondary beta-lactamases on pip/tazo outcomes Response: Back to phenotypic/genotypic betalactamase detection? Pip/tazo MIC of 16 now S-DD. **PETERPEN trial underway (**NCT03671967)

Key Reference: CID 2021;73:e3842

Finding: Clinical failures in patients with CTX-S, ESBL + isolates

Response: Phenotypic test for ESBL → change cephalosporin $S \rightarrow R$

Problem: Breaks the S paradigm, requires extra testing

Key Reference: J Clin Micro 2001;39:2206-2212

Finding: Association of pip/tazo with increased mortality vs mero for definitive tx of ESBL BSI Response: Carbapenems preferred for serious **ESBL** infections

Problem: Less-severe infections, empiric therapy, re-breaks the S paradigm

Key Reference: JAMA 2018;10:984-994 (MERINO

IDSA Guidance Recommendations for ESBL-EB come down hard for team carbapenem

Syndrome	First-line	Alternative	Avoid
Uncomplicated cystitis	Nitrofurantoin TMP/SMX	Amox/clav Aminoglycoside x1 Fosfomycin Cefepime Pip/tazo	Doxycycline
Pyelo/complicated UTI	Carbapenem Cipro/levo TMP/SMX	Pip/tazo	Cefepime Doxycycline
Infections outside the urinary tract	Carbapenem (Transition to FQ or TMP/SMX after clinical response if PO desired)		Pip/tazo Cefepime Amox/clav Doxycycline
Tamma et al. IDSA Guidance on the Transfer of	reatment of Antimicrobial-Resistant Gra uideline/amr-guidance/#	m-Negative Infections:	Omadacycline

A 68 yo F hospitalized for ICH develops fever, increased WBC and dyspnea on day 10 of hospitalization. Empiric ceftriaxone and vancomycin are initiated. Blood cultures are growing *Enterobacter cloacae*, with a presumed pulmonary source. Patient has defervesced and respiratory status is improving on 48 hours of vancomycin + ceftriaxone.

Blood, *Enterobacter cloacae*

Ampicillin >16 R

Ampicillin/sulbactam >16/8 R

Aztreonam 2 S

Cefazolin>16 R

Ceftazidime 2 S

Ceftriaxone 1 S

Cefepime <= 2 S

Ertapenem <= 0.25 S

Meropenem <= 0.5 S

Piperacillin/tazobactam 8/4 s

What beta-lactamase enzyme do you think this

organism is producing?

What antibiotic(s) would you recommend for AY?

- a) Ceftriaxone
- b) Cefepime
- c) Ertapenem
- d) Meropenem
- e) Piperacillin/tazobactam

Blood, Enterobacter cloacae Ampicillin >16 R

Ampicillin/sulbactam >16/8 R

Aztreonam 2 S

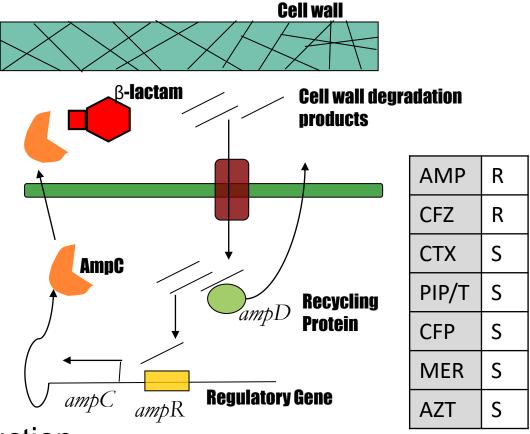
Cefazolin>16 R

Ceftazidime 2 S

Ceftriaxone 1 S

Cefepime <=2 S

Ertapenem <= 0.25 S


Meropenem <= 0.5 S

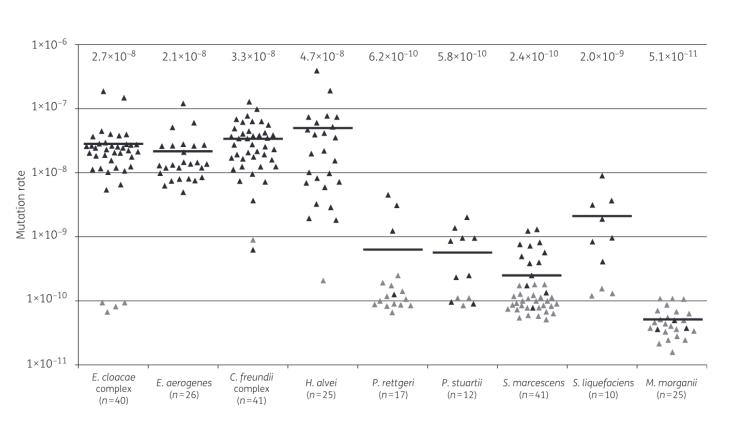
Piperacillin/tazobactam 8/4 S-DD

-"HECK-Yes":
Hafnia alvei
Enterobacter cloacae
Citrobacter freundii
Klebsiella aerogenesYErSinia enterocolitica;
Pseudomonas
-1st gen cephalosporin &
amp/sulbactam resistance

		Beta-lactamase Groups						
Functional Group		1		2			3	
Molecular Class		С		А	-	D	В	
Subclass	(WT)	(DR)	2b	2be (ESBL)	2f	2df		
Example Enzymes	Ar	mpC	TEM-1, TEM-3, KP SHV-1 SHV-2, CTX- M		KPC-1	OXA-48	NDM-1	
Hydrolytic activity vs	beta-lactan	ns (predicted	phenotype)					
Aminopenicillins	+++ (R)	+++ (R)	+++ (R)	+++ (R)	+++ (R)	+++ (R)	+++ (R)	
Piperacillin	+ (s)	++ (r/R)	++ (r)	++ (r/R)	+++ (R)	+++ (R)	+++ (R)	
1 st /2 nd GC	+++ (R)	+++ (R)	+ (s)	+++ (R)	+++ (R)	++ (R)	+++ (R)	
3 rd /4 th GC	+ (s)	++ (r/R)	(S)	++ (r/R)	+++ (R)	+ (s/r)	+++ (R)	
Monobactams	+ (s)	+++ (R)	(S)	+++ (R)	+++ (R)	(S)	(S)	
Penems	(S) 🚣	(S)	(S)	(S)	++ (r/R)	++ (r/R)	++ (R)	
Other characteristics								
Inhibition by clavulanate			+++	++				
Inhibition by avibactam	+++	++	+++	+++	++	++		
Location	Chron	nosomal	Plasmid					
Expression		lucible nstitutive	Constitutive					

Many Gram-negatives possess AmpC type β-lactamase that is (usually) chromosomal, (usually) inducible & hydrolyzes PCNs, 1-3rd GC, aztreonam

β-lactam
$ \begin{array}{c c} \hline ampC \end{array} $


AMP	R
CFZ	R
СТХ	R
PIP/T	R
CFP	S
MER	S
AZT	R

- Induction
 - Antibiotics increase # of peptide degradation products, which bind to regulatory element, leading to production of modest amounts of β-lactamase in presence of antibiotic

- Stable Derepression
 - Spontaneous mutant with defect in recycling pathway triggering high-level constitutive β-lactamase production (in presence or absence of inducers)

↑ risk of mutations → AmpC derepression and *emergent resistance* in clinical isolates for *Hafnia, Enterobacter, Citrobacter, Klebs (aerogenes)*

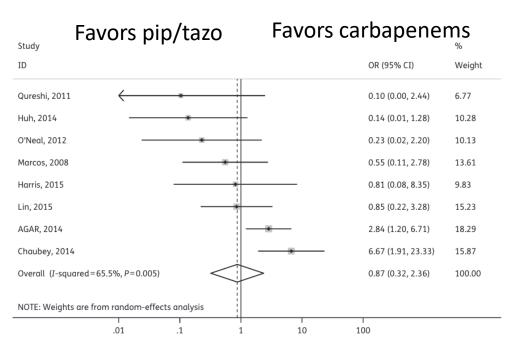
So...SPACE/SPICE is out — HECK-Yes is in!

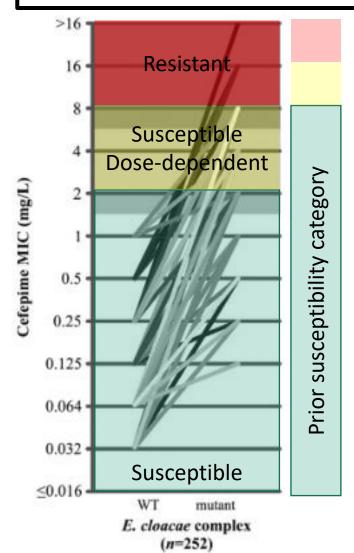
Population	Emergent 3 rd -generation Cephalosporin Resistance			
	Bacteremic	Non-bacteremic		
All species	4/54 (7.4%)	7/164 (4.3%)		
Enterobacter cloacae	2/18 (11.1%)	6/71(12.7%)		
Klebsiella aerogenes	2/10 (20.0%)	0/41 (0%)		
Citrobacter freundii	0/8 (0.0%)	1/31 (3.2%)		
Serratia marcescens	0/10 (0.0%)	0/27 (0.0%)		
Morganella morganii	0/6 (0.0%)	0/15 (0.0%)		

Kohlmann R, et al. J Antimicrob Chemother 2018; 73: 1530–1536 Choi S-H, et al. Antimicrob Agents Chemother 2008;52:995-1000.

Pip-tazo similar outcomes to carbapenems in cohort studies — is it a viable option? There's a MERINO for that! Sort of...

So...pip/tazo probably not a drug of choice for severe HECK-Yes infections




Figure 2. Forest plot of unadjusted ORs for mortality in patients given definitive therapy with BLBLIs versus carbapenems.

Harris PNA, et al. J Antimicrob Chemother 2016; 71:296 – 306 Stewart AG, et al OFID 2021

Meropenem Versus Piperacillin-Tazobactam for Definitive Treatment of Bloodstream Infections Caused by AmpC β-Lactamase–Producing <i>Enterobacter</i> spp, <i>Citrobacter</i>		
freundii, Morganella morganii, Providencia spp, or Serratia marcescens: A Pilot Multicenter Randomized Controlled Trial (MERINO-2)	Pip/tazo (n=38)	Mero (n=34)
<u>Primary outcome</u> : Death or clinical failure or micro failure or micro relapse	29%	21%
Death day 30	0%	6%
Clinical failure day 5	21%	12%
Micro failure days 3-5	13%	0%
Micro relapse days 5-30	0%	9%
Primary outcome by organism		
Enterobacter	28% (5/18)	7% (1/14)
Non-Enterobacter	30% (6/20)	30% (6/20)

Cefepime better AmpC stability though MICs do rise with derepressed isolates – cohort studies favorable; no RCTs available/ongoing

So... cefepime may be an option for AmpC infections but pay attention to MIC

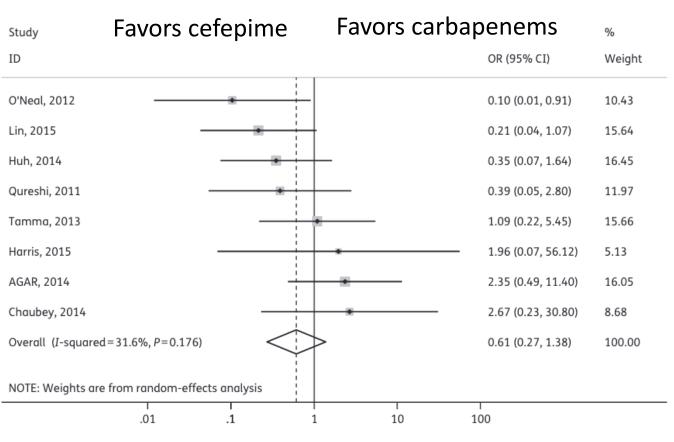


Figure 4. Forest plot of unadjusted ORs for mortality in patients given definitive therapy with cefepime versus carbapenems.

Kohlmann R, et al. Clin Micro Infect 2019;25:1158 Harris PNA, et al. J Antimicrob Chemother 2016; 71:296 – 306

IDSA Guidance Recommendations for Enterobacterales at significant risk of AmpC-emergent resistance

Syndrome	Recommended	Consider	Avoid			
Uncomplicated cystitis	Nitrofurantoin TMP/SMX	Ceftriaxone Ceftazidime Pip/tazo Fosfomycin	Doxycycline			
Infections besides uncomplicated cystitis	Cefepime (MIC <=2) Ertapenem Meropenem Imipenem Fluoroquinolones	Ceftaz/avi Imi/rel Mero/vabor Cefiderocol TMP/SMX	Ceftol/tazo Amox/clav Doxycycline Fosfomycin Nitrofurantoin Ceftriaxone			
	amma et al. IDSA Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections: https://www.idsociety.org/practice-guideline/amr-guidance-2.0/					

A 68 yo F hospitalized for ICH develops fever, increased WBC and dyspnea on day 10 of hospitalization. Empiric <u>ceftazidime</u> and vancomycin are initiated. Blood cultures are growing <u>Pseudomonas aeruginosa</u>, with a presumed pulmonary source. Patient has defervesced and respiratory status is improving on 48 hours of vancomycin + <u>ceftazidime</u>.

Blood, **Pseudomonas** aeruginosa

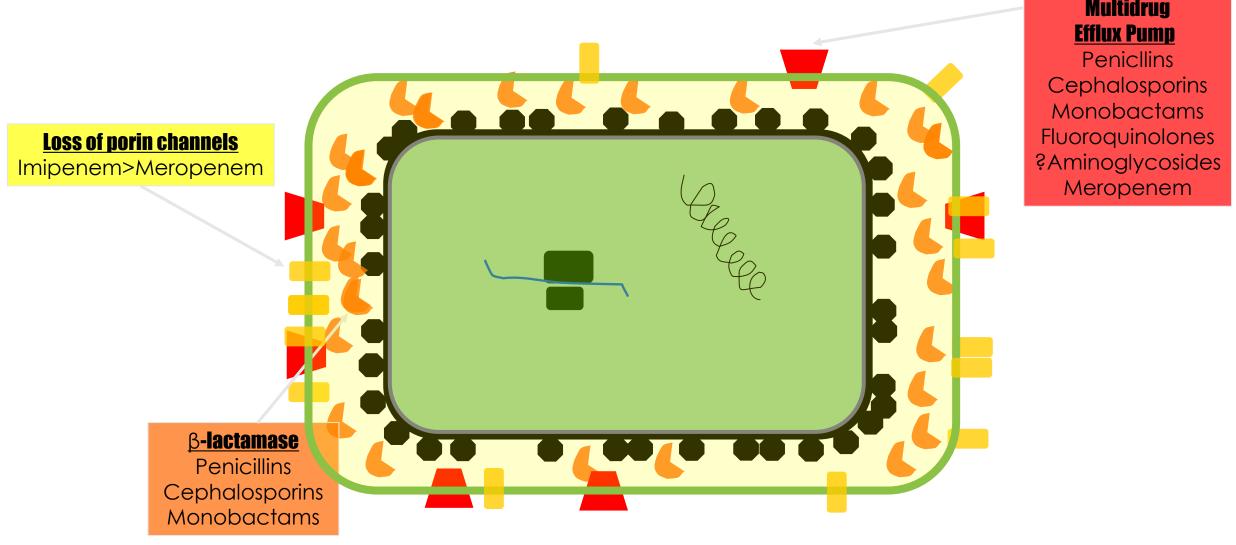
Aztreonam 2 S

Ceftazidime 2 S

Cefepime <=2 S

Meropenem <= 0.5 S

Piperacillin/tazobactam 16/4 S


What beta-lactamase enzyme do you think this

organism is producing?

What antibiotic(s) would you recommend for AY?

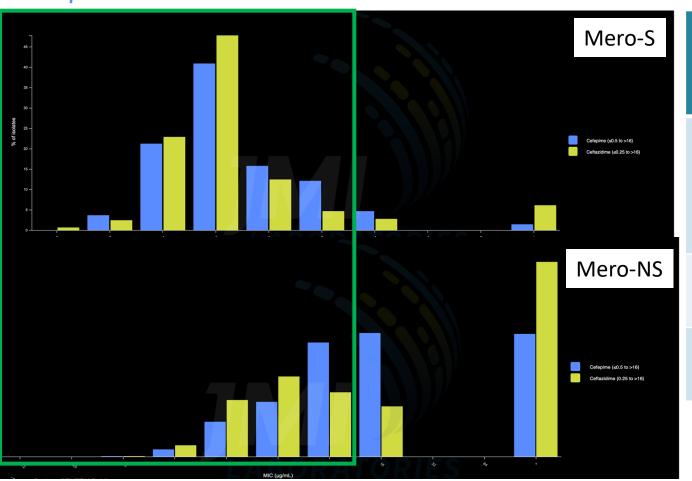
- a) Ceftazidime
- b) Cefepime
- c) Meropenem
- d) Piperacillin/tazobactam

In addition to upregulation of AmpC, Pseudomonas can express other intrinsic resistance mechanisms that work synergistically to promote resistance

Multidrug

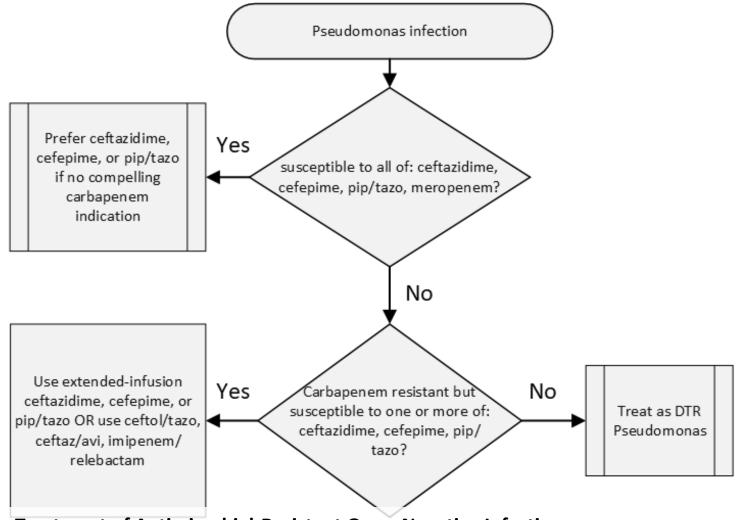
Emergent resistance **MORE common with carbapenems** (vs PCNs, cephs) in *Pseudomonas*; clinical outcomes appear similar

So... no advantage of carbapenems for therapy of susceptible *Pseudomonas*


	Emergent Resistance of Initially Susceptible Isolates						
Study	Cephalosporins	Penicillins	Carbapenems	FQs			
Fish	11% (63/594)	14% (78/542)	35% (78/225)	16% (99/639)			
Carmeli	11% (14/125)	8% (7/91)	19% (7/37)	11% (11/98)			
Babich	12% (25/201)	8% (28/332)	18% (36/206)	N/R			
Clinical Outcomes (Ba	abich et al)						
Outcome	Ceftazidime	Pip/tazo	Carbapenem	p-value			
30-day mortality	17.4%	16%	20%	0.48			
7-day mortality	6.1%	4.9%	7.6%	0.43			
Clinical failure	45.9%	37.3%	44.4%	0.12			

Fish DN, et al. Pharmacother 1995;15:279-291 Carmeli Y, et al. Antimicrob Ag Chemother 43:1379-1382 Babich T, et al Clin Infect Dis 2020;70

Presence of *any* anti-pseudomonal beta-lactam resistance may *increase risk of failure* of active beta-lactams


So...if there's any beta-lactam resistance, treat more aggressively

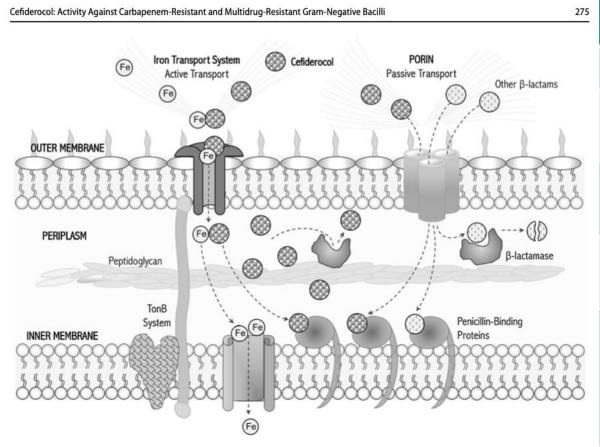
Cefepime & ceftazidime MICs

Outcome	No β- lactam resistance	≥1 other β-lactam resistant	Adjusted OR (95% CI)
Hospital mortality or d/c to hospice	29%	35%	1.42 (0.89-2.29)
30-day mortality	27%	33%	1.65 (1.02-2.66)
Discharged alive to home	35%	17%	0.50 (0.29-0.85)

SENTRY data Lodise et al *Pharmacotherapy*. 2021;41:658–667 IDSA recommends *non-carbapenems over carbapenems if all S*; dose optimization or consider novel β-lactams if carbapenem resistance

Tamma et al. IDSA Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections:

Version 1.0 https://www.idsociety.org/practice-guideline/amr-guidance/#


Novel beta-lactams offer *activity against "DTR" Pseudomonas* (except meropenem/vaborbactam)

Novel beta-lactam	% S among ceftazidime/pip- tazo/FQ/carbapenem-R <i>Pseudomonas</i>
Ceftazidime/avibactam	82%
Ceftolozane/tazobactam	82%
Imipenem/relebactam	71%
Meropenem/vaborbactam	36%*
Cefiderocol	97%

^{*}No official breakpoint for *Pseudomonas*

Sader HS, et al. Int J ID 2021;113:279-281 Karlowsky JA, et al. Microbiol Spect 2022;10:01724-22

Cefiderocol is a novel cephalosporin combining β -lactamase stability & \uparrow target site concentration & ? clinical data

APE	KS NP	CREDIBLE CR		
Multicenter DB RCT		Multicenter DB RCT		
VAP (41%) non-VAP HAP (59%)		HAP/VAP (45%) UTI (26%)		
Klebsiella (33%) Pseudomonas (17%)		Acinetobacter (45%) Klebsiella (34%)		
CFDC	MER 2g IV q8h over 3h	CFDC	COL combos (66%)	
Clinical cure: 65% vs 67% (noninferior); 14-day mortality: 12.4% vs 11.6% (noninferior)		28-day morta 18% (p=NS); response: 53 (p=NS)	Clinical	

IDSA Guidance Recommendations for "DTR *Pseudomonas* infections"

"Difficult to treat Resistance (DTR)" = non-susceptibility to all of the following: piperacillin-tazobactam, ceftazidime, cefepime, aztreonam, meropenem, imipenem-cilastatin, ciprofloxacin, and levofloxacin

Syndrome	Recommended	Consider	Avoid
Urinary tract infection	Ceftol/tazo Ceftaz/avi Imi/rel Cefiderocol Tobramycin x1 (uncomplicated cystitis)	Colistin	Plazomicin Fosfomycin
Infections besides UTI	Ceftol/tazo Ceftaz/avi Imi/rel	Cefiderocol Polymyxin B	Plazomicin Polymyxin B Adjunctive inhaled antibiotics

Tamma et al. IDSA Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections

RF is a 45 yo M s/p liver transplant with a complicated post-operative course with suspicion for VAP, on empiric linezolid, meropenem, and caspofungin x3 days without improvement. A bronchoalveolar lavage is performed and grows *Klebsiella pneumoniae*.

Amikacin 16 S

Ampicillin >16 R

Ampicillin/sulbactam >16/8 R

Aztreonam >16 R

Cefazolin>16 R

Ceftazidime >16 R

Ceftazidime/avibactam <= 2/2 S

Ceftolozane/tazobactam >16/4 R

Ceftriaxone >32 R

Cefepime >16 R

Ciprofloxacin >2 R

Colistin 1

Ertapenem >8 R

Meropenem 4 R

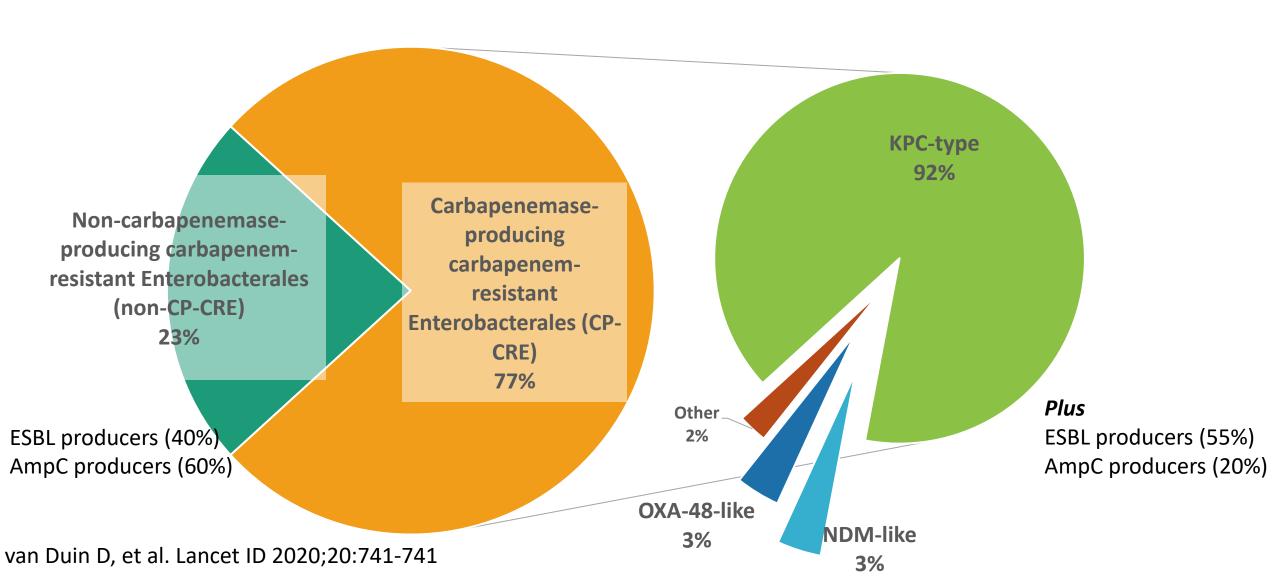
Minocycline 8 I

Piperacillin/tazobactam >128/4 R

Tigecycline 2

Tobramycin >8 R

What beta-lactamase enzyme do you think this


organism is producing?

What antibiotic(s) would you recommend for AY?

- a) Colistin
- b) Ceftazidime/avibactam
- c) Extended-infusion meropenem
- d) Tigecycline

BAL, Klebsiella pneumoniae				Bet	a-lactamase Gr	oups	Beta-lactamase Groups						
Amikacin 16 S	Functional Group		1		2			3					
Ampicillin >16 R Ampicillin/sulbactam >16/8 R Aztreonam >16 R	Molecular Class		С	A			D	В					
	Subclass	(WT)	(DR)	2b	2be (ESBL)	2f	2df						
Cefazolin>16 R	Example Enzymes	A	mpC	TEM-1,	TEM-3,	KPC-1	OXA-48	NDM-1					
Ceftazidime >16 R	. ,			SHV-1	SHV-2, CTX-								
Ceftazidime/avibactam <= 2/2 S	Hydrolytic activity vs	beta-lactar	ns (predicted	phenotype)									
Ceftolozane/tazobactam >16/4 R	Aminopenicillins	+++ (R)	+++ (R)	+++ (R)	+++ (R)	+++ (R)	+++ (R)	+++ (R)					
Ceftriaxone >32 R		+++ (IX)		+++ (IX)			· · ·						
Cefepime >16 R	Piperacillin	+ (s)	++ (r/R)	++ (r)	++ (r/R)	+++ (R)	+++ (R)	+++ (R)					
Ciprofloxacin >2 R	1 st /2 nd GC	+++ (R)	+++ (R)	+ (s)	+++ (R)	+++ (R)	++ (R)	+++ (R)					
Colistin 1	3 rd /4 th GC	. (0)	(r/D)	(C)	(*/D)	(D)	1 (2/4)	(D)					
Ertapenem >8 R	314411 GC	+ (s)	++ (r/R)	(S)	++ (r/R)	+++ (R)	+ (s/r)	+++ (R)					
Meropenem 4 R	Monobactams	+ (s)	+++ (R)	(S)	+++ (R)	+++ (R)	(S)	(S)					
Minocycline 8 I	Penems	(S)	(S)	(S)	(S)	++ (r/R)	++ (r/R)	++ (R)					
Piperacillin/tazobactam >128/4 R			(-)	(-)	(-)	(' '	1	()					
Tigecycline 2	Other characteristics				1								
Tobramycin >8 R	Inhibition by clavulanate			+++	++								
Genotypic probe positive for KPC-1 gene	Inhibition by avibactam	+++	++	+++	+++	++	++						
-Carbapenem resistance	Common organisms	C.A	L \PES		 Ente	erobacteria	reae						
(mero>erta), restoration of	Location		nosomal		Plasmid		Plasmid	Plasmid					
ceftazidime by avibactam													
	Expression		ucible nstitutive		Constitutive		Constitutive	Constitutive					

About ¾ of carbpenemase-resistant Enterobacterales (CRE) are carbapenemase producers (CP-CRE), most commonly KPC-type

Novel BLI combinations (BLICs) appear *superior to standard salvage therapies* for CRE based on cohorts & "pathogen-directed" trials

CRA	CKLE	TANGO II (RCT)		RESTORE IMI-1 (RCT)		
Multicenter cohort		Multicenter OL RCT		Multicenter DB RCT		
BSI (45%) HAP/VAP (22%)		` ,		UTI (50%) HAP/VAP (35%)		
Klebsiella (97%)		,		Pseudomonas (77%) Klebsiella (15%)		
CTZ/AVI (37%), + TIG (32%), CARB (29%)	COL (6%), + TIG (61%), CARB (60%)	MER/VBR COL (7%) + AG (100%) (20%), TIG (13%), AG/TG (7%)		IMI/REL	IMI + COL	
30-day mortality: 9% vs 32% (p=0.001)		28-day mortality: 15% vs 33% (p=0.20); Clinical cure: 66% vs 33% (p=0.03)		28-day mortality: 9% vs 30% (p=0.15); Clinical response: 71% vs 40%		
van Duin D et al. (2018 Jan 6;66(2):		Wunderink RG, et al. Infect Dis Ther.		Motsch J, et al Clin Infect Dis. 20 Apr 15;70(9):1799-1808.		

Emergent CTZ/AVI resistance already a concern; MER/VBR possibly more robust vs resistance

Table 6. Post-Hoc Subgroup Analysis	CZA Monotherapy (N=41)	CZA Combination Therapy (N=64)	MVB Monotherapy (N= 22)	<i>p</i> - value	
Clinical success [n (%)]	26 (63.4)	39 (60.9)	15 (68.2)	0.83	
90-day mortality [n (%)]	9 (22.0)	20 (31.2)	6 (27.3)	0.58	
Recurrence of CRE infection [n (%)]	9 (22.0)	6 (9.4)	3 (13.6)	0.20	
Increase in study drug MIC	5 (12.2)	1 (1.6)	0	0.03	
Emergence of study drug resistance	3 (7.3)	0	0	0.07	
Any adverse event [n (%)]	14 (34.2)	22 (34.4)	5 (22.7)	0.57	
Nephrotoxicity [n (%)]	10 (24.4)	16 (25.0) ^a	2 (9.1)	0.27	
Initiation of RRT [n (%)]	1 (2.4)	2 (3.1)	0	1.0	
Time to start RRT from study drug initiation days) (median [IQR])	13.6	7.2 [4.7-9.7]	0		
Leukopenia [n (%)]	4 (9.8)	7 (10.9)	2 (9.1)	1.0	
Rash [n (%)]	3 (7.3)	1 (1.6)	1 (4.6)	0.31	
Neurotoxicity [n (%)]	0	1 (1.6)	0	1.0	

"Although all three agents are preferred agents for the treatment of KPC-producing infections, the panel slightly favors meropenem-vaborbactam, followed by ceftazidime-avibactam, and then imipenem-cilastatin-relebactam, based on available data regarding clinical outcomes and emergence of resistance."

Abbreviations: CRE, carbapenem-resistant Enterobacteriaceae; ICU, intensive care unit; IQR, interquartile range; MIC, minimum inhibitory concentration; RRT, renal replacement therapy.

Combination therapy use with CZA: colistin (37.5%), polymyxin B (25%), tigecycline (25%), fluoroquinolone (18.8%), aminoglycoside (6.3%).

What about those non-CP-CRE? Depends on differential carbapenem susceptibility

Susceptibility	- 1 · 1 ·	l'arani n			
		Escherichia coli (ESBL Producer) MIC (Preliminary)			
Amikacin	<=8	Susceptible *			
Ampicillin	>16	Resistant *			
Ampicillin and Sulbactam	>16	Resistant *			
Aztreonam	>16	Resistant *			
Caspofungin acetate					
Cefazolin	>16	Resistant *			
Cefepime	>16	Resistant *			
Ceftazidime	>16	Resistant *			
Ceftazidime and Avibactam	<=2	Susceptible *			
Ceftolozane and Tazobactam	>16	Resistant *			
Ceftriaxone	>32	Resistant *			
Ciprofloxacin	<=0.25	Susceptible *			
Doripenem	<=0.5	Susceptible *			
Ertapenem	8	Resistant			
Fluconazole					
Gentamicin	<=2	Susceptible *			
Imipenem	2	Intermediate *			
Levofloxacin	<=0.5	Susceptible *			
Meropenem	1	Susceptible			
Minocycline	<=1	Susceptible *			
Piperacillin and Tazobactam	>64	Resistant *			
Tigecycline	<=1 *				
Tobramycin	<=2	Susceptible *			
Trimethoprim and Sulfamethoxazole	<=2	Susceptible *			

Question 3.1: What is the preferred treatment approach for infections caused by Enterobacterales isolates without carbapenemase production that remain susceptible to meropenem and imipenem but are not susceptible to ertapenem?

Suggested approach: For infections caused by Enterobacterales isolates that exhibit susceptibility to meropenem and imipenem (i.e., MICs $\leq 1 \,\mu g/mL$), but are not susceptible to ertapenem (i.e., MICs $\geq 1 \,\mu g/mL$), the use of extended-infusion meropenem (or imipenem-cilastatin) is suggested, assuming no carbapenemase has been identified.

For isolates susceptible to meropenem but not susceptible to imipenem (and vice versa), in the absence of data to inform the optimal treatment approach, the panel suggests basing the treatment decision on the severity of illness of the patient and site of infection. For example, in this scenario, meropenem may be a reasonable treatment for urinary tract infection but not for a complex intra-abdominal infection. The panel suggests against the use of meropenem-vaborbactam or imipenem-cilastatin-relebactam to treat ertapenem-resistant, meropenem-susceptible and imipenem-susceptible infections since these agents are unlikely to offer any substantial benefit beyond that of extended-infusion meropenem or imipenem-cilastatin alone.

Genes tested: KPC, NDM, OXA48, VIM, IMP 1)

IDSA Guidance Recommendations for KPC-producing Enterobacterales

Syndrome	Recommended	Consider
Urinary tract infection	Cipro & levo	Ceftaz/avi
	TMP/SMX	Mero/vabor
	Meropenem EI (if erta-R but mero-S)	Imi/rel
	Nitrofurantoin (Ucystitis)	Cefiderocol
	Fosfomycin (Ucystitis)	
	Aminoglycoside x1 (Ucystitis)	
Infections besides	Mero/vabor	Tigecycline
uncomplicated cystitis	Ceftaz/avi	Eravacycline
	Imi/rel	Cefiderocol

PK is a 58 yo F hx morbid obesity, DVTs, AFib, with hx of multiple intraabdominal surgeries with placement of ventral hernia mesh unable to be removed with adjacent fluid collections growing *Klebsiella pneumoniae*, susceptibilities below.

Amikacin >32 R

Ampicillin >16 R

Ampicillin/sulbactam >16/8 R

Aztreonam >16 R

Cefazolin>16 R

Ceftazidime >16 R

Ceftazidime/avibactam >16/4 R

Ceftolozane/tazobactam >16/4 R

Ceftriaxone >32 R

Cefepime >16 R

Ciprofloxacin >2 R

Colistin >32 R

Ertapenem >8 R

Meropenem >8 R

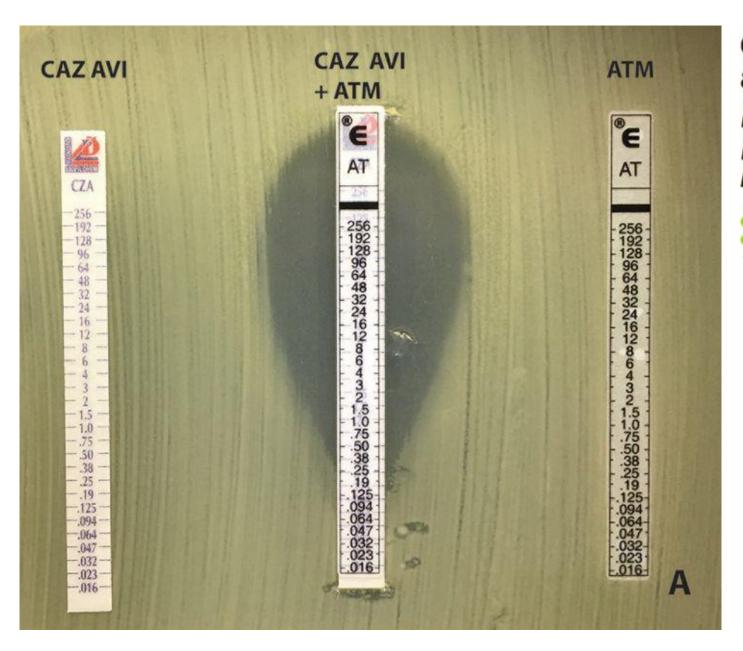
Minocycline 2 S

Piperacillin/tazobactam >128/4 R

Tigecycline 2

Tobramycin >8 R

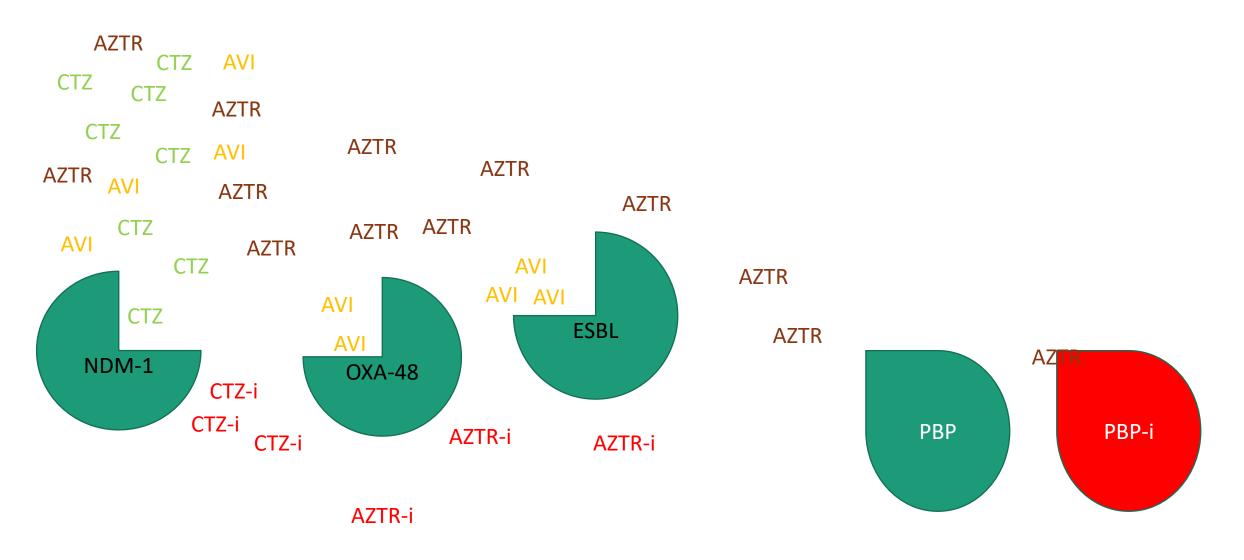
What beta-lactamase enzyme do you think this


organism is producing?

What antibiotic(s) would you recommend for AY?

- a) Minocycline
- b) Tigecycline
- c) Polymyxin B & stuff

d)


Peritoneal fluid, <i>Klebsiella pneumoniae</i>				Bet	a-lactamase Gro	oups		
Amikacin >32 R Ampicillin >16 R	Functional Group		1	2				3
Ampicillin/sulbactam >16/8 R Aztreonam >16 R	Molecular Class		С		А		D	В
Ceftazidime >16 R Ceftazidime >16 R Ceftazidime/avibactam >16/4 R Ceftolozane/tazobactam >16/4 R Ceftriaxone >32 R Cefepime >16 R Ciprofloxacin >2 R Colistin >32 R Ertapenem >8 R Meropenem >8 R Minocycline 2 S	Subclass	(W	T) (DR)	2b	2be (ESBL)	2f	2df	
	Example Enzymes	AmpC TEM-1, TEM-3, SHV-1 SHV-2, CTX-M		KPC-1	OXA-48	NDM-1		
	Hydrolytic activity vs	beta-l	NDM-1	phenotype)				
	Aminopenicillins	+++	-High-level carbapenem resistance			+++ (R)	+++ (R)	+++ (R)
	Piperacillin	+ (-Lack of restoration of ceftaz by avi (or mero by vabor)				+++ (R)	+++ (R)
	1 st /2 nd GC	+++				+++ (R)	++ (R)	+++ (R)
Piperacillin/tazobactam >128/4 R Tigecycline 2	3 rd /4 th GC	+ ("hidden" by 2	nd beta-la	ctamase)	+++ (R)	+ (s/r)	+++ (R)
Tobramycin >8 R	Monobactams	+ (OXA-48			+++ (R)	(S)	(S)
Genotypic probes positive for NDM-1 and OXA-48	Penems	(-Moderate-lev	vel carba _l	oenem [©]	++ (r/R)	++ (r/R)	+++ (R)
genes	Other characteristics	resistance						
Synergy testing for aztreonam + ceftazidime/avibactam	Inhibition by clavulanate		-Possibly CTZ or CFP susceptibility -Aztreonam susceptibility (often					
MIC: CTZ/AVI (alone): >256 CTZ/AVI (combination): 1 Aztreonam (alone): 32 Aztreonam (combination): 0.01 Fractional inhibitory combination index: 0.01. Interpretation: synergistic	Inhibition by avibactam	++	"hidden" by 2 nd beta-lactamase) ++				++	`
	Common organisms		-Inhibited by avibactam (but not phacted)			obacteria	ceae	
	Location		Chromosomal	,	Plasmid		Plasmid	Plasmid
	Expression		Inducible →Constitutive		Constitutive		Constitutive	Constitutive

Ceftazidime-Avibactam and Aztreonam, an Interesting Strategy To Overcome β-Lactam Resistance Conferred by Metallo-β-Lactamases in Enterobacteriaceae and Pseudomonas aeruginosa

- Benjamin Davido,^a Lesly Fellous,^b Christine Lawrence,^{c,d} Virginie Maxime,^e
- Martin Rottman,^{d,f} Aurélien Dinh^a

Aztreonam avoids MBLs while avibactam protects it from serine beta-lactamases, while the ceftazidime is cannon fodder

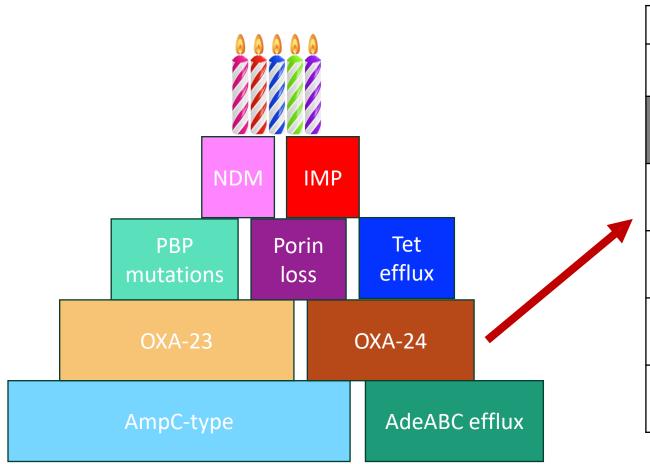
Nonrandomized clinical data and IDSA guidance supports CTZ/AVI + aztreonam for MBL-producing GNRs; aztreo/AVI in RCTs

Question 3.6: What are the preferred antibiotics for the treatment of infections outside of the urinary tract caused by CRE if NDM production is present?

Suggested approach: Ceftazidime-avibactam in combination with aztreonam, or cefiderocol as monotherapy, are preferred treatment options for NDM and other metallo- β -lactamase-producing infections.

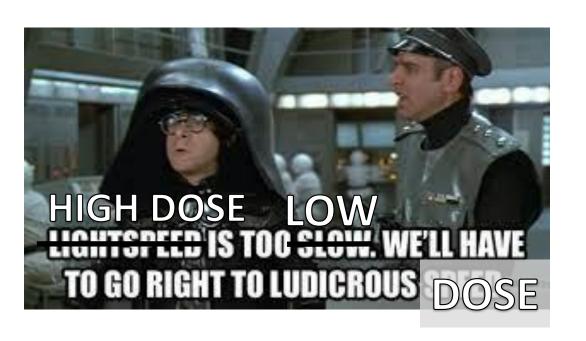
Table 4. Cox Regression Analysis of Factors Independently Associated With 30-Day Mortality

Factor	HR (95% CI)	<i>P</i> Value
Cardiovascular disease	6.62 (2.77–15.78)	<.001
Solid organ transplantation	3.52 (1.42-8.69)	.006
SOFA score (1-point increment)	1.21 (1.1-1.32)	<.001
CAZ-AVI + ATM (vs OAAs)	0.17 (.0741)	< .001


Abbreviations: ATM, aztreonam; CAZ-AVI, ceftazidime-avibactam; CI, confidence interval; HR, hazard ratio; OAAs, other active antibiotics; SOFA, Sequential Organ Failure Assessment. Efficacy and Safety of Aztreonam-Avibactam for the Treatment of Serious Infections Due to Gram-Negative Bacteria, Including Metallo-β-Lactamase-Producing Pathogens: Phase 3 REVISIT Study

MBL-positive status		
Micro-ITT analysis set		
	ATM-AVI ± MTZ	MER ± COL
N	7	3
Cure n (%)	2 (28.6)	2 (66.7)
Failure n (%)	3 (42.9)	1 (33.3)
Indeterminate n (%)	2 (28.6)	0
ME analysis set		
	ATM-AVI ± MTZ	MER ± COL
N	4	1
Cure n (%)	2 (50.0)	0 (0)
Failure n (%)	2 (50.0)	1 (100)

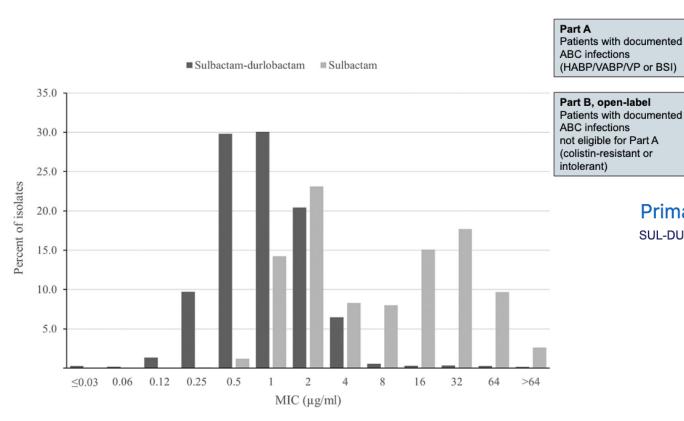
Tamma et al. IDSA Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections Falcone M, et al. Clin Infect Dis. 2021 Jun 1;72(11):1871-1878. ID Week 2023


A brief word on CRABc (Carbapenem-resistant *Acinetobacter baumanii* complex)

CRAB typically layers *multiple resistance mechanisms* which can evade even most newer BLICs

Molecular Class	D		
Example Enzymes	OXA-48	OXA-23/24	
Other characteristics			
Inhibition by clavulanate		1	
Inhibition by avibactam	++		
Inhibition by vaborbactam			
Inhibition by relebactam			

IDSA recommends *high doses of ampicillin/sulbactam* + second agent for serious CRAB infections



Dose	Daily SUL	AMP/SUL regimen
FDA-approved (max dose)	4 g	2/1 g q6h over 30 mins
IDSA high- dose (low end)	6 g	2/1 g IV q4h over 30 mins
IDSA high- dose (high end)	9 g	6/3 g IV q8h over 4 hours

"When non-susceptibility to ampicillin-sulbactam is demonstrated, the panel believes *ampicillin-sulbactam may still remain an effective treatment option* based on the potential for sulbactam to saturate altered PBP targets"

Tamma et al. IDSA Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections

Sulbactam/durlobactam is a *newly approved* BLIC with potent activity vs CRAB

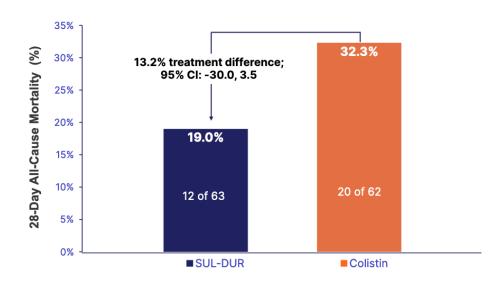
FIG 1 Sulbactam-durlobactam (black bars) and sulbactam (gray bars) MIC distributions for 5,032 isolates of *Acinetobacter baumannii-calcoaceticus* complex (ABC) species collected globally from 2016 to 2021.

Primary efficacy endpoint achieved

SUL-DUR non-inferiority on 28-day all-cause mortality vs. colistin in CRABC m-MITT population

Treatment duration 7–14 days

SUL-DUR (1g/1g)^a q6h


IMI (1g/1g) q6h

Colistin (2.5 mg/kg)^a q12h

IMI (1g/1g) q6h

SUL-DUR (1g/1g)^a q6h

IMI (1g/1g) q6h

Late follow-up

7±2 days after

TOC

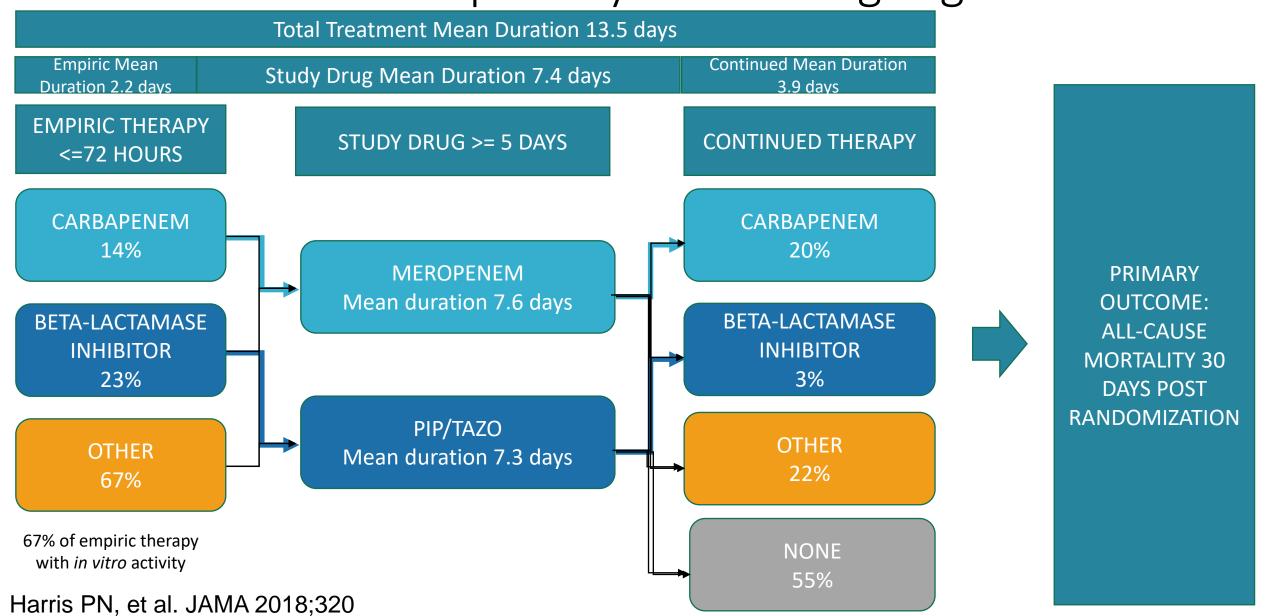
Survival

assessed at

Day 28

TOC

7±2 days after last


dose

Key Points Review

- Interpret susceptibility results in context of potential resistance mechanisms
 - Situations to avoid even when S for severe infections
 - Likely ESBL: pip/tazo, cefepime
 - Likely Amp-C (HECK-Yes): ceftriaxone, pip/tazo
 - Situations to consider even when R
 - Likely NDM-1: ceftaz/avi + aztreonam
 - Acinetobacter (likely OXA): amp/sulbactam [or sulbactam/durlobactam]
- IDSA has new expert guidance on management of GNRs use it!

Additional Slides

MERINO I intervention was *DEFINITIVE treatment*, <u>after</u> identification & susceptibility of infecting organism

Outcomes favored meropenem; trial stopped early for potential harm

So...carbapenems > pip/tazo for serious ESBL infections regardless of susceptibility

	30-day mortality		p-value				
Group/ Subgroup	p/tazo	Meropenem	(noninferiority or interaction)	Figure 2. Secondary Outcomes			
mITT 1	2.3%	3.7%	0.90		Patients Meeting No./Total No. (%)		
Source				Measure of Success	Piperacillin- Tazobactam	Meropenem	Betwe Differ
UTI 6	5.9%	3.1%	0.44	Clinical and microbiological success at day 4 ^a Microbiological success at day 4	121/177 (68.4) 169/174 (97.1)	138/185 (74.6) 184/185 (99.5)	-6.2 (-15.5 t -2.3 (-6.1 to
Non-UTI 1	8.8%	4.8%					
Empiric Abx			0.70		Patients Meeting No./Total No. (%)		
	4.3%	3.9%		Measure of Failure	Piperacillin- Tazobactam	Meropenem	Between-Group Difference (95% CI
Adequate	4.3/0	3.970		Microbiological relapse	9/187 (4.8)	4/191 (2.1)	2.7 (-1.1 to 7.1)
Inadequate 8	3.2%	3.1%		Secondary infection with multiresistant organism or Clostridium difficile	15/187 (8.0) ^b	8/191 (4.2) ^c	3.8 (-1.1 to 9.1)
Immuno- compromsed			0.27				
Yes 1	9.6%	2.5%					
No 9	9.6%	4.0%					

Harris PN, et al. JAMA 2018;320

UCSF's approach to reporting CTX-R *E. coli, Proteus mirabilis, K. pneumoniae, K. oxytoca* (putative ESBL producers w/o other intrinsic beta-lactamases)

Sample	СТХ	CTZ	Micro report (non-ID)	Notation
Sterile site (blood, CSF, etc)	>1	>4	Ertapenem only	"Testing indicates potential extended spectrum beta lactamase (ESBL) production. Carbapenems are the drug of choice for treatment of severe ESBL infections. Contact id or id pharmacy for alternatives."
Non-sterile site other than urine (respiratory, non-sterile tissue, etc)	>1	>4	All sensitivities per normal cascade	"Testing indicates potential extended spectrum beta lactamase (ESBL) production. Carbapenems are the drug of choice for treatment of severe ESBL infections. For superficial infections (e.g. cellulitis) other drugs to which the organism is susceptible in vitro are effective."
Urine	>1	>4	All sensitivities per normal cascade	"Based on this organism's drug resistance profile, a carbapenem may be preferred for patients with pyelonephritis or urosepsis."

Potential AmpC-producing organisms vary in their risk of treatment-emergent resistance

Enterobacterales with inducible chromosomal AmpC			What about?		
Significant risk of emergent resistance ("HECK-Yes")	Low risk of emergent resistance	Organism	Rationale		
Enterobacter cloacae	Serratia marcescens	E. coli*	Chromosomal AmpC but non-inducible		
Klebsiella aerogenes	Morganella morganii	Proteus spp	mirabilis, penneri – no AmpC vulgaris - cefuroximase		
Citrobacter freundii/ Citrobacter youngae	Providencia spp	Citrobacter koseri	Lacks chromosomal AmpC		
Hafnia alvei		Pseudomonas	Inducible chromosomal AmpC – but not Enterobacterales (& multiple other resistance mechanisms)		
Yersinia entercolitica					

^{*}acquisition of plasmid-borne, high-expression AmpC can occur